47

我在一个文件中有一个 Python 脚本,它需要 30 多秒才能运行。我正在尝试对其进行分析,因为我想大大减少这个时间。

我正在尝试使用 来分析脚本cProfile,但基本上它似乎告诉我的是,是的,主脚本需要很长时间才能运行,但并没有给出我所期望的那种故障。在终端,我输入如下内容:

cat my_script_input.txt | python -m cProfile -s time my_script.py

我得到的结果是:

<my_script_output>
             683121 function calls (682169 primitive calls) in 32.133 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1   31.980   31.980   32.133   32.133 my_script.py:18(<module>)
   121089    0.050    0.000    0.050    0.000 {method 'split' of 'str' objects}
   121090    0.038    0.000    0.049    0.000 fileinput.py:243(next)
        2    0.027    0.014    0.036    0.018 {method 'sort' of 'list' objects}
   121089    0.009    0.000    0.009    0.000 {method 'strip' of 'str' objects}
   201534    0.009    0.000    0.009    0.000 {method 'append' of 'list' objects}
   100858    0.009    0.000    0.009    0.000 my_script.py:51(<lambda>)
      952    0.008    0.000    0.008    0.000 {method 'readlines' of 'file' objects}
 1904/952    0.003    0.000    0.011    0.000 fileinput.py:292(readline)
    14412    0.001    0.000    0.001    0.000 {method 'add' of 'set' objects}
      182    0.000    0.000    0.000    0.000 {method 'join' of 'str' objects}
        1    0.000    0.000    0.000    0.000 fileinput.py:80(<module>)
        1    0.000    0.000    0.000    0.000 fileinput.py:197(__init__)
        1    0.000    0.000    0.000    0.000 fileinput.py:266(nextfile)
        1    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 fileinput.py:91(input)
        1    0.000    0.000    0.000    0.000 fileinput.py:184(FileInput)
        1    0.000    0.000    0.000    0.000 fileinput.py:240(__iter__)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

这似乎没有告诉我任何有用的信息。绝大多数时间都简单地列出为:

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1   31.980   31.980   32.133   32.133 my_script.py:18(<module>)

my_script.py中,第 18 行无非"""是文件头块注释的关闭,所以并不是说有大量工作集中在第 18 行。整个脚本主要由基于行的处理组成,其中大部分是字符串拆分、排序和设置工作,所以我期待大部分时间都花在这些活动中的一项或多项上。就目前而言,将 cProfile 的结果中的所有时间分组为发生在注释行上没有任何意义,或者至少不能说明实际上一直在消耗什么。

编辑:我构建了一个与上述案例类似的最小工作示例来演示相同的行为:

mwe.py

import fileinput

for line in fileinput.input():
    for i in range(10):
        y = int(line.strip()) + int(line.strip())

并调用它:

perl -e 'for(1..1000000){print "$_\n"}' | python -m cProfile -s time mwe.py

要得到结果:

         22002536 function calls (22001694 primitive calls) in 9.433 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    8.004    8.004    9.433    9.433 mwe.py:1(<module>)
 20000000    1.021    0.000    1.021    0.000 {method 'strip' of 'str' objects}
  1000001    0.270    0.000    0.301    0.000 fileinput.py:243(next)
  1000000    0.107    0.000    0.107    0.000 {range}
      842    0.024    0.000    0.024    0.000 {method 'readlines' of 'file' objects}
 1684/842    0.007    0.000    0.032    0.000 fileinput.py:292(readline)
        1    0.000    0.000    0.000    0.000 fileinput.py:80(<module>)
        1    0.000    0.000    0.000    0.000 fileinput.py:91(input)
        1    0.000    0.000    0.000    0.000 fileinput.py:197(__init__)
        1    0.000    0.000    0.000    0.000 fileinput.py:184(FileInput)
        1    0.000    0.000    0.000    0.000 fileinput.py:266(nextfile)
        1    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 fileinput.py:240(__iter__)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

我是否以某种方式错误地使用了 cProfile?

4

1 回答 1

69

正如我在评论中提到的,当您无法cProfile在外部工作时,您通常可以在内部使用它。这并不难。

例如,当我-m cProfile在我的 Python 2.7 中运行时,我实际上得到了与你相同的结果。但是当我手动检测您的示例程序时:

import fileinput
import cProfile

pr = cProfile.Profile()
pr.enable()
for line in fileinput.input():
    for i in range(10):
        y = int(line.strip()) + int(line.strip())
pr.disable()
pr.print_stats(sort='time')

......这就是我得到的:

         22002533 function calls (22001691 primitive calls) in 3.352 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 20000000    2.326    0.000    2.326    0.000 {method 'strip' of 'str' objects}
  1000001    0.646    0.000    0.700    0.000 fileinput.py:243(next)
  1000000    0.325    0.000    0.325    0.000 {range}
      842    0.042    0.000    0.042    0.000 {method 'readlines' of 'file' objects}
 1684/842    0.013    0.000    0.055    0.000 fileinput.py:292(readline)
        1    0.000    0.000    0.000    0.000 fileinput.py:197(__init__)
        1    0.000    0.000    0.000    0.000 fileinput.py:91(input)
        1    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 fileinput.py:266(nextfile)
        1    0.000    0.000    0.000    0.000 fileinput.py:240(__iter__)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

这更有用:它告诉您可能已经预料到的情况,即您一半以上的时间都花在了调用str.strip().


另外,请注意,如果您无法编辑包含要分析的代码的文件 ( mwe.py),您可以随时执行以下操作:

import cProfile
pr = cProfile.Profile()
pr.enable()
import mwe
pr.disable()
pr.print_stats(sort='time')

即使这样也并不总是奏效。exit()例如,如果您的程序调用,则必须使用try:/finally:包装器和/或atexit. 它调用os._exit(),或段错误,你可能完全被水洗了。但这并不常见。


但是,我后来发现:如果您将所有代码移出全局范围,-m cProfile似乎可以工作,至少在这种情况下是这样。例如:

import fileinput

def f():
    for line in fileinput.input():
        for i in range(10):
            y = int(line.strip()) + int(line.strip())
f()

现在的输出-m cProfile包括:

2000000 4.819 0.000 4.819 0.000 :0(条带) 100001 0.288 0.000 0.295 0.000 文件输入.py:243(下一个)

我不知道为什么这也让它慢了一倍……或者这只是缓存效应;距离我上次运行它已经有几分钟了,我在这之间做了很多网页浏览。但这并不重要,重要的是大部分时间都被收费到合理的地方。

但是,如果我将其更改为将外部循环移至全局级别,并且仅将其主体变为函数,则大部分时间会再次消失。


另一种选择,我不会建议,除非作为最后的手段……</p>

我注意到,如果我使用 profile 而不是 cProfile,它在内部和外部都可以工作,从而为正确的调用计费。但是,这些调用也慢了大约 5 倍。并且似乎还有额外的 10 秒的持续开销(import profile如果在内部使用,则会收取费用,如果在外部使用,则在第 1 行进行收费)。因此,要找出split使用了 70% 的时间,而不是等待 4 秒并执行 2.326 / 3.352,我必须等待 27 秒,然后执行 10.93 / (26.34 - 10.01)。没什么好玩的……</p>


最后一件事:我在 CPython 3.4 开发版本中得到了相同的结果——在内部使用时结果正确,在外部使用时所有费用都计入第一行代码。但是 PyPy 2.2/2.7.3 和 PyPy3 2.1b1/3.2.3 似乎都给了我正确的结果-m cProfile。这可能只是意味着 PyPycProfile是伪造的,profile因为纯 Python 代码足够快。


无论如何,如果有人能弄清楚/解释为什么-m cProfile不工作,那就太好了……但否则,这通常是一个非常好的解决方法。

于 2014-01-22T06:32:16.770 回答