我有这种格式的数据(更长,但仍然缩写,数据集可以在这里找到):
pull_req_id,user,action,created_at
1679,NiGhTTraX,opened,1380104504
1678,akaariai,opened,1380044613
1678,akaariai,opened,1380044618
...
加载了以下库:
library(TraMineR)
library(sqldf)
我使用此功能(很快)加载它:
read_seqdata <- function(data, startdate, stopdate){
data <- read.table(data, sep = ",", header = TRUE)
data <- subset(data, select = c("pull_req_id", "action", "created_at"))
colnames(data) <- c("id", "event", "time")
data <- sqldf(paste0("SELECT * FROM data WHERE strftime('%Y-%m-%d', time,
'unixepoch', 'localtime') >= '",startdate,"' AND strftime('%Y-%m-%d', time,
'unixepoch', 'localtime') <= '",stopdate,"'"))
data$end <- data$time
data <- data[with(data, order(time)), ]
data$time <- match(data$time, unique(data$time))
data$end <- match(data$end, unique(data$end))
(data)
}
project_sequences <- read_seqdata("/Users/name/github/local/data/event-data.txt",
'2012-01-01', '2012-06-30')
然后我运行这个函数来计算序列长度(非常慢):
sequence_length <- function(data){
slmax <- max(data$time)
sequences.sts <- seqformat(data, from="SPELL", to="DSS", begin="time",
end="end", id="id", status="event", limit=slmax)
sequences.sts <- seqdef(sequences.sts, right = "DEL", left = "DEL",
gaps = "DEL")
sequences.length <- seqlength(sequences.sts)
(sequences.length)
}
project_length <- sequence_length(project_sequences)
然而,这是非常缓慢的。关于如何重构代码以加快速度的任何建议?
一些时间戳相距数千步,但每个序列只有几步长。不同序列的时间戳之间的大距离是否会导致计算时间长(在大学超级计算机上超过 20 小时)?