您可以使用蛮力广播方法,但您正在创建一个 shape 的中间数组,(D, d, d)
如果您的数组甚至中等大,它可能会失控。此外,在使用没有改进的广播时,您需要从最内层循环重新计算大量计算,而您只需要执行一次。如果您首先计算所有可能值的必要参数i - j
并将它们相加,则可以在外循环中重用这些值,例如:
def fast_ops(eig1, eig2, theta):
d = len(eig1)
d_arr = np.arange(d)
i_j = d_arr[:, None] - d_arr[None, :]
reidx = i_j + d - 1
mult1 = eig1[:, None] * eig1[ None, :] + eig2[:, None] + eig2[None, :]
mult2 = eig1[None, :] * eig2[:, None] - eig1[:, None] * eig2[None, :]
mult1_reidx = np.bincount(reidx.ravel(), weights=mult1.ravel())
mult2_reidx = np.bincount(reidx.ravel(), weights=mult2.ravel())
angles = theta[:, None] * np.arange(1 - d, d)
return 0.5 * (np.einsum('ij,j->i', np.cos(angles), mult1_reidx) -
np.einsum('ij,j->i', np.sin(angles), mult2_reidx))
如果我们将 M4rtini 的代码重写为函数进行比较:
def fast_ops1(eig1, eig2, theta):
d = len(eig1)
D = len(theta)
s = np.array(range(D))[:, None, None]
i = np.array(range(d))[:, None]
j = np.array(range(d))
ret = 0.5 * (np.cos(theta[s]*(i-j))*(eig1[i]*eig1[j]+eig2[i]+eig2[j]) -
np.sin(theta[s]*(i-j))*(eig1[j]*eig2[i]-eig1[i]*eig2[j]))
return ret.sum(axis=(-1, -2))
我们编造了一些数据:
d, D = 100, 200
eig1 = np.random.rand(d)
eig2 = np.random.rand(d)
theta = np.random.rand(D)
速度提升非常显着,在原始代码的 115 倍之上增加了 80 倍,从而实现了惊人的 9000 倍加速:
In [22]: np.allclose(fast_ops1(eig1, eig2, theta), fast_ops(eig1, eig2, theta))
Out[22]: True
In [23]: %timeit fast_ops1(eig1, eig2, theta)
10 loops, best of 3: 145 ms per loop
In [24]: %timeit fast_ops(eig1, eig2, theta)
1000 loops, best of 3: 1.85 ms per loop