0

我已经计算了散点图的最佳拟合曲线,我想将结果绘制为平滑曲线,类似于 SAS 的样条曲线。

经过一番谷歌搜索后,我发现我应该先在我的数据上使用 interpolate.interp1d,然后再绘制线条。但是,当我尝试根据文档中的教程执行此操作时出现错误。提前感谢您的任何帮助或资源!

from scipy import interpolate
j = np.arange(0, 29, 1) # new x values
k = (model(xdata, g_fit, a_fit, b_fit)) # y values
l = interpolate.interp1d(j, k)

plt.scatter(xdata, ydata, c='g', marker='x')
plt.plot(xdata, model(xdata, g_fit, a_fit, b_fit), color='red')
plt.plot(j, l(k))
plt.axis([-1, 31, 0.5, 1.2]) # xmin, xmax, ymin, ymax
plt.show()
print p


---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-56-0db707080a49> in <module>()
      2 j = np.arange(0, 29, 1)
      3 k = (model(xdata, g_fit, a_fit, b_fit))
----> 4 l = interpolate.interp1d(j, k)
      5 
      6 plt.scatter(xdata, ydata, c='g', marker='x')

C:\Enthought\Canopy32\User\lib\sitepackages\scipy\interpolate\
interpolate.py in __init__
(self, x, y, kind, axis, copy, bounds_error, fill_value)
    331                  copy=True, bounds_error=True, fill_value=np.nan):
    332         """ Initialize a 1D linear interpolation class."""
--> 333         _Interpolator1D.__init__(self, x, y, axis=axis)
    334 
    335         self.copy = copy

C:\Enthought\Canopy32\User\lib\site-packages\scipy\interpolate\
polyint.py in __init__(self, xi, yi, axis)
     33         self.dtype = None
     34         if yi is not None:
---> 35             self._set_yi(yi, xi=xi, axis=axis)
     36 
     37     def __call__(self, x):

C:\Enthought\Canopy32\User\lib\site-packages\scipy\interpolate\
polyint.py in _set_yi(self, yi, xi, axis)
     92             shape = (1,)
     93         if xi is not None and shape[axis] != len(xi):
---> 94             raise ValueError("x and y arrays must be equal in length along "
     95                              "interpolation axis.")
     96 

ValueError: x and y arrays must be equal in length along interpolation axis.
4

1 回答 1

0

你不先检查数组ij的形状。也许你的函数模型返回一个不同大小的数组?

我真的应该发表评论,但我确实有足够的积分发表评论......

于 2014-01-07T06:13:43.760 回答