我有一个混合模型,数据如下所示:
> head(pce.ddply)
subject Condition errorType errors
1 j202 G O 0.00000000
2 j202 G P 0.00000000
3 j203 G O 0.08333333
4 j203 G P 0.00000000
5 j205 G O 0.16666667
6 j205 G P 0.00000000
每个主题为 errorType(O 或 P)提供两个数据点,每个主题处于条件 G(N=30)或 N(N=33)。errorType 是重复变量,Condition 是介于变量之间。我对主要影响和相互作用都感兴趣。所以,首先是方差分析:
> summary(aov(errors ~ Condition * errorType + Error(subject/(errorType)),
data = pce.ddply))
Error: subject
Df Sum Sq Mean Sq F value Pr(>F)
Condition 1 0.00507 0.005065 2.465 0.122
Residuals 61 0.12534 0.002055
Error: subject:errorType
Df Sum Sq Mean Sq F value Pr(>F)
errorType 1 0.03199 0.03199 10.52 0.001919 **
Condition:errorType 1 0.04010 0.04010 13.19 0.000579 ***
Residuals 61 0.18552 0.00304
Condition 并不重要,但 errorType 和交互作用一样重要。
但是,当我使用 lmer 时,我得到了一组完全不同的结果:
> lmer(errors ~ Condition * errorType + (1 | subject),
data = pce.ddply)
Linear mixed model fit by REML
Formula: errors ~ Condition * errorType + (1 | subject)
Data: pce.ddply
AIC BIC logLik deviance REMLdev
-356.6 -339.6 184.3 -399 -368.6
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 0.000000 0.000000
Residual 0.002548 0.050477
Number of obs: 126, groups: subject, 63
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.028030 0.009216 3.042
ConditionN 0.048416 0.012734 3.802
errorTypeP 0.005556 0.013033 0.426
ConditionN:errorTypeP -0.071442 0.018008 -3.967
Correlation of Fixed Effects:
(Intr) CndtnN errrTP
ConditionN -0.724
errorTypeP -0.707 0.512
CndtnN:rrTP 0.512 -0.707 -0.724
所以对于 lmer,Condition 和交互很重要,但 errorType 不重要。
此外, lmer 结果与 glm 结果完全相同,让我相信有问题。
有人可以帮我理解为什么它们如此不同吗?我怀疑我使用 lmer 不正确(尽管我尝试了许多其他版本,例如 (errorType | subject),但结果相似。