20

python的熊猫很整洁。我正在尝试用熊猫数据框替换字典列表。但是,我想知道有一种方法可以在 for 循环中逐行更改值吗?

这是非熊猫字典版本:

trialList = [
    {'no':1, 'condition':2, 'response':''},
    {'no':2, 'condition':1, 'response':''},
    {'no':3, 'condition':1, 'response':''}
]  # ... and so on

for trial in trialList:
    # Do something and collect response
    trial['response'] = 'the answer!'

...现在trialList包含更新的值,因为trial引用了该值。非常便利!但是字典列表非常不方便,特别是因为我希望能够按列计算熊猫擅长的东西。

所以给定上面的trialList,我虽然可以通过做一些类似pandas的事情来让它变得更好:

import pandas as pd    
dfTrials = pd.DataFrame(trialList)  # makes a nice 3-column dataframe with 3 rows

for trial in dfTrials.iterrows():
   # do something and collect response
   trials[1]['response'] = 'the answer!'

...但trialList在这里保持不变。有没有一种简单的方法来逐行更新值,可能相当于字典版本?重要的是它是逐行的,因为这是一个实验,其中向参与者展示了许多试验,并且在每个试验中收集了各种数据。

4

1 回答 1

55

如果你真的想要逐行操作,你可以使用iterrowsand loc

>>> for i, trial in dfTrials.iterrows():
...     dfTrials.loc[i, "response"] = "answer {}".format(trial["no"])
...     
>>> dfTrials
   condition  no  response
0          2   1  answer 1
1          1   2  answer 2
2          1   3  answer 3

[3 rows x 3 columns]

更好的是,当您可以矢量化时:

>>> dfTrials["response 2"] = dfTrials["condition"] + dfTrials["no"]
>>> dfTrials
   condition  no  response  response 2
0          2   1  answer 1           3
1          1   2  answer 2           3
2          1   3  answer 3           4

[3 rows x 4 columns]

而且总是有apply

>>> def f(row):
...     return "c{}n{}".format(row["condition"], row["no"])
... 
>>> dfTrials["r3"] = dfTrials.apply(f, axis=1)
>>> dfTrials
   condition  no  response  response 2    r3
0          2   1  answer 1           3  c2n1
1          1   2  answer 2           3  c1n2
2          1   3  answer 3           4  c1n3

[3 rows x 5 columns]
于 2013-12-19T21:41:03.117 回答