我最近偶然发现了numba,并考虑将一些自制的 C 扩展替换为更优雅的 autojitted python 代码。不幸的是,当我尝试第一个快速基准测试时,我并不高兴。似乎 numba 在这里的表现并不比普通的 python 好多少,尽管我本来期望接近 C 的性能:
from numba import jit, autojit, uint, double
import numpy as np
import imp
import logging
logging.getLogger('numba.codegen.debug').setLevel(logging.INFO)
def sum_accum(accmap, a):
res = np.zeros(np.max(accmap) + 1, dtype=a.dtype)
for i in xrange(len(accmap)):
res[accmap[i]] += a[i]
return res
autonumba_sum_accum = autojit(sum_accum)
numba_sum_accum = jit(double[:](int_[:], double[:]),
locals=dict(i=uint))(sum_accum)
accmap = np.repeat(np.arange(1000), 2)
np.random.shuffle(accmap)
accmap = np.repeat(accmap, 10)
a = np.random.randn(accmap.size)
ref = sum_accum(accmap, a)
assert np.all(ref == numba_sum_accum(accmap, a))
assert np.all(ref == autonumba_sum_accum(accmap, a))
%timeit sum_accum(accmap, a)
%timeit autonumba_sum_accum(accmap, a)
%timeit numba_sum_accum(accmap, a)
accumarray = imp.load_source('accumarray', '/path/to/accumarray.py')
assert np.all(ref == accumarray.accum(accmap, a))
%timeit accumarray.accum(accmap, a)
这在我的机器上给出:
10 loops, best of 3: 52 ms per loop
10 loops, best of 3: 42.2 ms per loop
10 loops, best of 3: 43.5 ms per loop
1000 loops, best of 3: 321 us per loop
我正在运行 pypi 的最新 numba 版本,0.11.0。任何建议,如何修复代码,以便使用 numba 运行得相当快?