7

我正在尝试使用两个不同的级联分类器识别两个不同的对象。我修改了人脸识别示例,但我遇到了一个问题:当我尝试从 object1.xml 识别对象时,它会打印两个矩形,当我尝试从 object2.xml 识别对象时,它不会打印任何内容...

问题出在哪里??

private BaseLoaderCallback  mLoaderCallback = new BaseLoaderCallback(this) {
    @Override
    public void onManagerConnected(int status) {
        switch (status) {
            case LoaderCallbackInterface.SUCCESS:
            {
                Log.i(TAG, "OpenCV loaded successfully");

                // Load native library after(!) OpenCV initialization
                System.loadLibrary("detection_based_tracker");

                try {
                    // load cascade file from application resources
                    InputStream is = getResources().openRawResource(R.raw.object1);
                    File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
                    mCascadeFile = new File(cascadeDir, "object1.xml");
                    FileOutputStream os = new FileOutputStream(mCascadeFile);

                    /* By me */
                    InputStream is2 = getResources().openRawResource(R.raw.object2);
                    mCascadeFile2 = new File(cascadeDir, "object2.xml");
                    FileOutputStream os2 = new FileOutputStream(mCascadeFile2);

                    byte[] buffer2 = new byte[4096];
                    int bytesRead2;
                    while ((bytesRead2 = is2.read(buffer2)) != -1) {
                        os2.write(buffer2, 0, bytesRead2);
                    }
                    is2.close();
                    os2.close();
                    /* ............... */


                    byte[] buffer = new byte[4096];
                    int bytesRead;
                    while ((bytesRead = is.read(buffer)) != -1) {
                        os.write(buffer, 0, bytesRead);
                    }
                    is.close();
                    os.close();

                    mJavaDetector = new CascadeClassifier(mCascadeFile.getAbsolutePath());
                    /* By me */
                    mJavaDetector2 = new CascadeClassifier(mCascadeFile2.getAbsolutePath());
                    /* ........ */
                    if (mJavaDetector.empty() || mJavaDetector2.empty()) {
                        Log.e(TAG, "Failed to load cascade classifier");
                        mJavaDetector = null;
                        /* By me */
                        mJavaDetector2 = null;

                    } else
                        Log.i(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath() + mCascadeFile2.getAbsolutePath());

                    mNativeDetector = new DetectionBasedTracker(mCascadeFile.getAbsolutePath(), 0);

                    /**/
                    mNativeDetector2 = new DetectionBasedTracker(mCascadeFile2.getAbsolutePath(), 0);


                    cascadeDir.delete();

                } catch (IOException e) {
                    e.printStackTrace();
                    Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
                }

                mOpenCvCameraView.enableView();
            } break;
            default:
            {
                super.onManagerConnected(status);
            } break;
        }
    }
};

>

public Mat onCameraFrame(CvCameraViewFrame inputFrame) {

    mRgba = inputFrame.rgba();
    mGray = inputFrame.gray();

    if (mAbsoluteFaceSize == 0) {
        int height = mGray.rows();
        if (Math.round(height * mRelativeFaceSize) > 0) {
            mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
        }
        mNativeDetector.setMinFaceSize(mAbsoluteFaceSize);
        /* ...... */
        mNativeDetector2.setMinFaceSize(mAbsoluteFaceSize);
    }

    MatOfRect faces = new MatOfRect();
    /* ....... */
    MatOfRect faces2 = new MatOfRect();

    if (mDetectorType == JAVA_DETECTOR) {
        if (mJavaDetector != null && mJavaDetector2 != null) {
            mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2, new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
            /* ......... */
            mJavaDetector2.detectMultiScale(mGray, faces2, 1.1, 2, 2, new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
        }
    }
    else if (mDetectorType == NATIVE_DETECTOR) {
        if (mNativeDetector != null && mNativeDetector2 != null){
            mNativeDetector.detect(mGray, faces);
            /* ......... */
            mNativeDetector2.detect(mGray, faces2);
        }
    }
    else {
        Log.e(TAG, "Detection method is not selected!");
    }

    Rect[] facesArray = faces.toArray();
    for (int i = 0; i < facesArray.length; i++){
        Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
        Core.putText(mRgba, "Obj1", facesArray[i].tl(), 1, 2, new Scalar(255, 0, 0, 255), 3);
    }

    /* ...... */
    Rect[] facesArray2 = faces2.toArray();
    for (int i = 0; i < facesArray2.length; i++){
        Core.rectangle(mRgba, facesArray2[i].tl(), facesArray2[i].br(), FACE_RECT_COLOR, 3);
        Core.putText(mRgba, "Obj2", facesArray2[i].tl(), 1, 2, new Scalar(255, 0, 0, 255), 3);
    }

    return mRgba;
}

或者有一种方法可以从同一个 .xml 中检测不同的对象?



解决了

我以这种方式更新我的代码:

private BaseLoaderCallback  mLoaderCallback = new BaseLoaderCallback(this) {

    @Override
    public void onManagerConnected(int status) {
        switch (status) {
            case LoaderCallbackInterface.SUCCESS:
            {
                Log.i(TAG, "OpenCV loaded successfully");

                // Load native library after(!) OpenCV initialization
                System.loadLibrary("detection_based_tracker");

                try {
                    // load cascade file from application resources
                    InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
                    File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
                    mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
                    FileOutputStream os = new FileOutputStream(mCascadeFile);

                    byte[] buffer = new byte[4096];
                    int bytesRead;
                    while ((bytesRead = is.read(buffer)) != -1) {
                        os.write(buffer, 0, bytesRead);
                    }
                    is.close();
                    os.close();

                    /* By me */
                    InputStream is2 = getResources().openRawResource(R.raw.haarcascade_frontalface_alt);
                    File cascadeDir2 = getDir("cascade2", Context.MODE_PRIVATE);
                    mCascadeFile2 = new File(cascadeDir2, "haarcascade_frontalface_alt.xml");
                    FileOutputStream os2 = new FileOutputStream(mCascadeFile2);

                    byte[] buffer2 = new byte[4096];
                    int bytesRead2;
                    while ((bytesRead2 = is2.read(buffer2)) != -1) {
                        os2.write(buffer2, 0, bytesRead2);
                    }
                    is2.close();
                    os2.close();
                    /* ............... */




                    mJavaDetector = new CascadeClassifier(mCascadeFile.getAbsolutePath());
                    if (mJavaDetector.empty()) {
                        Log.e(TAG, "Failed to load cascade classifier");
                        mJavaDetector = null;

                    } else
                        Log.i(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath());


                    /* By me */
                    mJavaDetector2 = new CascadeClassifier(mCascadeFile2.getAbsolutePath());
                    /* ........ */
                    if (mJavaDetector2.empty()) {
                        Log.e(TAG, "Failed to load cascade classifier" + mCascadeFile.getAbsolutePath());
                        mJavaDetector2 = null;

                    } else
                        Log.i(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath() + mCascadeFile2.getAbsolutePath());

                    mNativeDetector = new DetectionBasedTracker(mCascadeFile.getAbsolutePath(), 0);

                    /**/
                    mNativeDetector2 = new DetectionBasedTracker(mCascadeFile2.getAbsolutePath(), 0);


                    cascadeDir.delete();
                    cascadeDir2.delete();

                } catch (IOException e) {
                    e.printStackTrace();
                    Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
                }

                mOpenCvCameraView.enableView();

            } break;
            default:
            {
                super.onManagerConnected(status);
            } break;
        }
    }
};

public Mat onCameraFrame(CvCameraViewFrame inputFrame) {

    mRgba = inputFrame.rgba();
    mGray = inputFrame.gray();

    if (mAbsoluteFaceSize == 0) {
        int height = mGray.rows();
        if (Math.round(height * mRelativeFaceSize) > 0) {
            mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
        }
        mNativeDetector.setMinFaceSize(mAbsoluteFaceSize);
        /* ...... */
        mNativeDetector2.setMinFaceSize(mAbsoluteFaceSize);
    }

    MatOfRect faces = new MatOfRect();
    /* ....... */
    MatOfRect faces2 = new MatOfRect();

    if (mDetectorType == JAVA_DETECTOR) {
        if (mJavaDetector != null && mJavaDetector2 != null) {
            mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2, new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
            /* ......... */
            mJavaDetector2.detectMultiScale(mGray, faces2, 1.1, 2, 2, new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
        }
    }
    else if (mDetectorType == NATIVE_DETECTOR) {
        if (mNativeDetector != null && mNativeDetector2 != null){
            mNativeDetector.detect(mGray, faces);
            /* ......... */
            mNativeDetector2.detect(mGray, faces2);
        }
    }
    else {
        Log.e(TAG, "Detection method is not selected!");
    }

    Rect[] facesArray = faces.toArray();
    for (int i = 0; i < facesArray.length; i++){
        Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
        Core.putText(mRgba, "Pista Ciclabile", facesArray[i].tl(), 1, 2, new Scalar(255, 0, 0, 255), 3);
    }

    /* ...... */

    Rect[] facesArray2 = faces2.toArray();
    for (int j = 0; j < facesArray2.length; j++){
        Core.rectangle(mRgba, facesArray2[j].tl(), facesArray2[j].br(), FACE_RECT_COLOR, 3);
        Core.putText(mRgba, "Viso", facesArray2[j].tl(), 1, 2, new Scalar(255, 0, 0, 255), 3);
    }

    return mRgba;
}

这就是结果:http: //i43.tinypic.com/15eqvl.png

4

0 回答 0