为其他用户纪念这一点。
在 HDFStore 中,如果某些列不是索引,则需要将它们指定为 data_columns,以便以后查询。
文档在这里
创建框架
In [23]: df = DataFrame(dict(date = pd.date_range('20130101',periods=10), id = list('abcabcabcd'), C = np.random.randn(10)))
In [28]: df
Out[28]:
C date id
0 0.605701 2013-01-01 00:00:00 a
1 0.451346 2013-01-02 00:00:00 b
2 0.479483 2013-01-03 00:00:00 c
3 -0.012589 2013-01-04 00:00:00 a
4 -0.028552 2013-01-05 00:00:00 b
5 0.737100 2013-01-06 00:00:00 c
6 -1.050292 2013-01-07 00:00:00 a
7 0.137444 2013-01-08 00:00:00 b
8 -0.327491 2013-01-09 00:00:00 c
9 -0.660220 2013-01-10 00:00:00 d
[10 rows x 3 columns]
保存到 hdf 没有 data_columns
In [24]: df.to_hdf('test.h5','df',mode='w',format='table')
0.13 会报这个错误(0.12 会默默忽略)
In [25]: pd.read_hdf('test.h5','df',where='date>20130101 & date<20130105 & id=["b","c"]')
ValueError: The passed where expression: date>20130101 & date<20130105 & id=["b","c"]
contains an invalid variable reference
all of the variable refrences must be a reference to
an axis (e.g. 'index' or 'columns'), or a data_column
The currently defined references are: index,columns
将所有列设置为数据列(也可以是特定的列列表)
In [26]: df.to_hdf('test.h5','df',mode='w',format='table',data_columns=True)
In [27]: pd.read_hdf('test.h5','df',where='date>20130101 & date<20130105 & id=["b","c"]')
Out[27]:
C date id
1 0.451346 2013-01-02 00:00:00 b
2 0.479483 2013-01-03 00:00:00 c
[2 rows x 3 columns]
这是ptdump -av
文件的表节点:
/df/table (Table(10,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"C": Float64Col(shape=(), dflt=0.0, pos=1),
"date": Int64Col(shape=(), dflt=0, pos=2),
"id": StringCol(itemsize=1, shape=(), dflt='', pos=3)}
byteorder := 'little'
chunkshape := (2621,)
autoindex := True
colindexes := {
"date": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
"id": Index(6, medium, shuffle, zlib(1)).is_csi=False}
/df/table._v_attrs (AttributeSet), 19 attributes:
[CLASS := 'TABLE',
C_dtype := 'float64',
C_kind := ['C'],
FIELD_0_FILL := 0,
FIELD_0_NAME := 'index',
FIELD_1_FILL := 0.0,
FIELD_1_NAME := 'C',
FIELD_2_FILL := 0,
FIELD_2_NAME := 'date',
FIELD_3_FILL := '',
FIELD_3_NAME := 'id',
NROWS := 10,
TITLE := '',
VERSION := '2.7',
date_dtype := 'datetime64',
date_kind := ['date'],
id_dtype := 'string8',
id_kind := ['id'],
index_kind := 'integer']
需要注意的关键是 data_columns 在“描述”中是分开的,并且它们被设置为索引。