最重要的是,我正在寻找一种快速(更好)的方法来多次对矩阵进行子集/索引:
for (i in 1:99000) {
subset.data <- data[index[, i], ]
}
背景:
我正在实施一个涉及 R 中引导程序的顺序测试过程。想要复制一些模拟结果,我遇到了需要进行大量索引的瓶颈。为了实现块引导,我创建了一个索引矩阵,我用它对原始数据矩阵进行子集化以绘制数据的重新采样。
# The basic setup
B <- 1000 # no. of bootstrap replications
n <- 250 # no. of observations
m <- 100 # no. of models/data series
# Create index matrix with B columns and n rows.
# Each column represents a resampling of the data.
# (actually block resamples, but doesn't matter here).
boot.index <- matrix(sample(1:n, n * B, replace=T), nrow=n, ncol=B)
# Make matrix with m data series of length n.
sample.data <- matrix(rnorm(n * m), nrow=n, ncol=m)
subsetMatrix <- function(data, index) { # fn definition for timing
subset.data <- data[index, ]
return(subset.data)
}
# check how long it takes.
Rprof("subsetMatrix.out")
for (i in 1:(m - 1)) {
for (b in 1:B) { # B * (m - 1) = 1000 * 99 = 99000
boot.data <- subsetMatrix(sample.data, boot.index[, b])
# do some other stuff
}
# do some more stuff
}
Rprof()
summaryRprof("subsetMatrix.out")
# > summaryRprof("subsetMatrix.out")
# $by.self
# self.time self.pct total.time total.pct
# subsetMatrix 9.96 100 9.96 100
# In the actual application:
#########
# > summaryRprof("seq_testing.out")
# $by.self
# self.time self.pct total.time total.pct
# subsetMatrix 6.78 53.98 6.78 53.98
# colMeans 1.98 15.76 2.20 17.52
# makeIndex 1.08 8.60 2.12 16.88
# makeStats 0.66 5.25 9.66 76.91
# runif 0.60 4.78 0.72 5.73
# apply 0.30 2.39 0.42 3.34
# is.data.frame 0.22 1.75 0.22 1.75
# ceiling 0.18 1.43 0.18 1.43
# aperm.default 0.14 1.11 0.14 1.11
# array 0.12 0.96 0.12 0.96
# estimateMCS 0.10 0.80 12.56 100.00
# as.vector 0.10 0.80 0.10 0.80
# matrix 0.08 0.64 0.08 0.64
# lapply 0.06 0.48 0.06 0.48
# / 0.04 0.32 0.04 0.32
# : 0.04 0.32 0.04 0.32
# rowSums 0.04 0.32 0.04 0.32
# - 0.02 0.16 0.02 0.16
# > 0.02 0.16 0.02 0.16
#
# $by.total
# total.time total.pct self.time self.pct
# estimateMCS 12.56 100.00 0.10 0.80
# makeStats 9.66 76.91 0.66 5.25
# subsetMatrix 6.78 53.98 6.78 53.98
# colMeans 2.20 17.52 1.98 15.76
# makeIndex 2.12 16.88 1.08 8.60
# runif 0.72 5.73 0.60 4.78
# doTest 0.68 5.41 0.00 0.00
# apply 0.42 3.34 0.30 2.39
# aperm 0.26 2.07 0.00 0.00
# is.data.frame 0.22 1.75 0.22 1.75
# sweep 0.20 1.59 0.00 0.00
# ceiling 0.18 1.43 0.18 1.43
# aperm.default 0.14 1.11 0.14 1.11
# array 0.12 0.96 0.12 0.96
# as.vector 0.10 0.80 0.10 0.80
# matrix 0.08 0.64 0.08 0.64
# lapply 0.06 0.48 0.06 0.48
# unlist 0.06 0.48 0.00 0.00
# / 0.04 0.32 0.04 0.32
# : 0.04 0.32 0.04 0.32
# rowSums 0.04 0.32 0.04 0.32
# - 0.02 0.16 0.02 0.16
# > 0.02 0.16 0.02 0.16
# mean 0.02 0.16 0.00 0.00
#
# $sample.interval
# [1] 0.02
#
# $sampling.time
# [1] 12.56'
执行一次顺序测试过程大约需要 10 秒。在具有 2500 次复制和几个参数星座的模拟中使用它,大约需要 40 天。使用并行处理和更好的 CPU 能力可以做得更快,但仍然不是很令人愉快:/
- 有没有更好的方法来重新采样数据/摆脱循环?
- 可以在任何地方应用、矢量化、复制等吗?
- 在 C 中实现子集是否有意义(例如操作一些指针)?
尽管 R 已经完成了每一步都非常快,但它还不够快。
对于任何形式的回应/帮助/建议,我确实非常高兴!
相关问题:
-通过“[”进行快速矩阵子集化:按行、按列还是无关紧要?
-用于在 R 中以矩阵形式生成引导样本的快速函数
-随机抽样 - 矩阵
从那里
mapply(function(row) return(sample.data[row,]), row = boot.index)
replicate(B, apply(sample.data, 2, sample, replace = TRUE))
并没有真正为我做。