汤姆已经回答了这个问题。在他的回答中,他建议使用Thrust或CUB来减少 CUDA。
在这里,我提供了一个完整的示例,说明如何使用这两个库来执行缩减。
#define CUB_STDERR
#include <stdio.h>
#include <thrust/device_ptr.h>
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
#include <cub/device/device_reduce.cuh>
#include "TimingGPU.cuh"
#include "Utilities.cuh"
using namespace cub;
/********/
/* MAIN */
/********/
int main() {
const int N = 8388608;
gpuErrchk(cudaFree(0));
float *h_data = (float *)malloc(N * sizeof(float));
float h_result = 0.f;
for (int i=0; i<N; i++) {
h_data[i] = 3.f;
h_result = h_result + h_data[i];
}
TimingGPU timerGPU;
float *d_data; gpuErrchk(cudaMalloc((void**)&d_data, N * sizeof(float)));
gpuErrchk(cudaMemcpy(d_data, h_data, N * sizeof(float), cudaMemcpyHostToDevice));
/**********/
/* THRUST */
/**********/
timerGPU.StartCounter();
thrust::device_ptr<float> wrapped_ptr = thrust::device_pointer_cast(d_data);
float h_result1 = thrust::reduce(wrapped_ptr, wrapped_ptr + N);
printf("Timing for Thrust = %f\n", timerGPU.GetCounter());
/*******/
/* CUB */
/*******/
timerGPU.StartCounter();
float *h_result2 = (float *)malloc(sizeof(float));
float *d_result2; gpuErrchk(cudaMalloc((void**)&d_result2, sizeof(float)));
void *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_data, d_result2, N);
gpuErrchk(cudaMalloc((void**)&d_temp_storage, temp_storage_bytes));
DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, d_data, d_result2, N);
gpuErrchk(cudaMemcpy(h_result2, d_result2, sizeof(float), cudaMemcpyDeviceToHost));
printf("Timing for CUB = %f\n", timerGPU.GetCounter());
printf("Results:\n");
printf("Exact: %f\n", h_result);
printf("Thrust: %f\n", h_result1);
printf("CUB: %f\n", h_result2[0]);
}
请注意,由于不同的底层哲学,CUB 可能比 Thrust 快一些,因为 CUB 留下了性能关键的细节,例如算法的确切选择和并发程度不受约束并掌握在用户手中。通过这种方式,可以调整这些参数,以最大限度地提高特定架构和应用程序的性能。
CUB in Action报告了计算数组欧几里得范数的比较——一些使用 CUB 模板库的简单示例。