我敢打赌,您所拥有的(即使您没有向我们展示)是一个结构化数组,如下所示:
array([(1, 5.3e-05, 0.004531, 0.010447, 0.051962),
(2, 0.000589, 0.004518, 0.009801, 0.052226),
(3, 8.3e-05, 0.004581, 0.010362, 0.052288),
(4, -0.000192, 0.003726, 0.011258, 0.051094),
(5, 0.000281, 0.004078, 0.01008, 0.052156),
(6, 9.1e-05, 0.004028, 0.009853, 0.052301),
(7, 0.000478, 0.004298, 0.009966, 0.054803),
(8, 0.00028, 0.004267, 0.010051, 0.050296),
(9, 0.000198, 0.004766, 0.010245, 0.051754)],
dtype=[('f0', '<i8'), ('f1', '<f8'), ('f2', '<f8'), ('f3', '<f8'), ('f4', '<f8')])
如果没有,那么您可以从文件中加载它:
a = np.genfromtxt('tmp.txt', dtype=None)
一旦它全部在一个数组中,就不需要遍历每一行:
如果你想累积第 1 列,那么这实际上'f1'
是结构化数组中的字段,所以使用:
>>> np.cumsum(a['f1'])
array([ 5.300e-05, 6.420e-04, 7.250e-04,
5.330e-04, 8.140e-04, 9.050e-04,
1.383e-03, 1.663e-03, 1.861e-03])
如果它是一个普通的浮点数组:
array([[ 1.000e+00, 5.300e-05, 4.531e-03, 1.0447e-02, 5.1962e-02],
[ 2.000e+00, 5.890e-04, 4.518e-03, 9.8010e-03, 5.2226e-02],
[ 3.000e+00, 8.300e-05, 4.581e-03, 1.0362e-02, 5.2288e-02],
[ 4.000e+00, -1.920e-04, 3.726e-03, 1.1258e-02, 5.1094e-02],
[ 5.000e+00, 2.810e-04, 4.078e-03, 1.0080e-02, 5.2156e-02],
[ 6.000e+00, 9.100e-05, 4.028e-03, 9.8530e-03, 5.2301e-02],
[ 7.000e+00, 4.780e-04, 4.298e-03, 9.9660e-03, 5.4803e-02],
[ 8.000e+00, 2.800e-04, 4.267e-03, 1.0051e-02, 5.0296e-02],
[ 9.000e+00, 1.980e-04, 4.766e-03, 1.0245e-02, 5.1754e-02]])
然后你所要做的就是cumsum
在列上调用:
>>> np.cumsum(a[:,1])
array([ 5.300e-05, 6.420e-04, 7.250e-04,
5.330e-04, 8.140e-04, 9.050e-04,
1.383e-03, 1.663e-03, 1.861e-03])