我已经在这几天了,我无法破解这个错误:
[3] pry(main)> my_list = (1..10).to_a.sample(10)
=> [3, 5, 9, 2, 7, 6, 10, 4, 1, 8]
[4] pry(main)> linear_select(my_list,4)
NoMethodError: undefined method `-' for nil:NilClass
from .../selector/select.rb:44:in `partition'
背景
我正在尝试使用或多或少严格的CLRS实现来实现有保证的线性时间 SELECT 函数。随机选择,中值枢轴选择,一切都顺利进行,直到我点击了这个。这是代码partition
:
def partition(my_list, part_start, part_end, pivot = my_list[part_end])
# From CLRS p. 171
# In-place rearrangement of subarrays to find rank of pivot. Does no rearrangement
# if the array is already sorted.
# Returns the rank of the pivot, which is set by default to the end of the partition.
return(0) if my_list.length == 1
sort_separator = part_start - 1
for loop_ind in (part_start..(part_end-1)) # This is the offending line 44
if my_list[loop_ind] <= my_list[part_end]
sort_separator += 1
my_list[sort_separator],my_list[loop_ind] =
my_list[loop_ind],my_list[sort_separator]
end
end
my_list[sort_separator+1],my_list[part_end] =
my_list[part_end],my_list[sort_separator+1]
return(sort_separator+1)
end
这几乎是 CLRS 伪代码的逐字转录(因此基本上没有错误检查),当我编写的其他风格的 SELECT 调用它时它可以工作,所以我认为问题出在线性时间 SELECT :
def linear_select(my_list, rank)
# From CLRS 9.3
# select algorithm in worst-case linear time
group_size = 5
# 1. Divide the elements of the input array into (n/5).floor(+1) groups
groups = my_list.each_slice(group_size).to_a
# 2. Sort, get medians of each group (the median method defined above includes
# sorting)
medians = groups.each.collect{|group| group.median}
# 3. Find median of medians using linear_select recursively
# median_of_medians = linear_select(medians,medians.length/2.floor-1) # doesn't work yet
median_of_medians = medians.median
# Partition input array around median of medians using partition with pivot
# argument -- where the pivot passes the array index
new_part = partition(my_list, 0, my_list.index(median_of_medians-1), median_of_medians)
# The rest of the algorithm follows the select() archetype.
pivot = new_part + 1
if rank == pivot
return my_list[new_part] # -1 here for zero-indexing
elsif rank < pivot
return(linear_select(my_list[0..(pivot - 1)], rank))
else
return(linear_select(my_list[pivot..-1], rank - pivot -1 ))
end
end
我在解释器中手动跟踪它并没有收到任何错误。(我还没有学会如何使用调试器,虽然我花了一个小时左右查看不同的包,比如hammertime。)事实上,由于在错误出现之前进行了改组,如果我再次运行它就可以了:
[5] pry(main)> linear_select(my_list,4)
=> 4
[6] pry(main)> my_list
=> [3, 2, 4, 5, 7, 6, 10, 9, 1, 8]
我认为错误是因为上索引( 中的第三个参数partition()
)超出范围,但我不清楚这是如何发生的。
任何帮助解释此错误,或朝着正确的方向推动找出原因将不胜感激。我觉得我很接近了。
编辑:作为参考,这是我实现该Array#median
方法的方式(下中位数):
class Array # extends Array to include median calculation
def median
# returns floor-median of list of values
self.sort[((self.length - 1)/2.0).floor()]
end
end