Luis Mendo 的解决方案的修改版本怎么样 - 但在对数中:
n = 1e4;
m1 = floor(n/2);
m2 = ceil(n/2);
k = 1:m2;
% Attempt to compute real value
out0 = [1 cumprod((n-k+1)./k)];
out0(n+1:-1:m1+2) = out0(1:m2);
% In logarithms
out1 = [0 cumsum((log(n-k+1)) - log(k))];
out1(n+1:-1:m1+2) = out1(1:m2);
plot(log(out0) - out1, 'o-')
使用对数的优点是您可以设置n = 1e4;
并仍然获得实际值的良好近似值(nchoosek(1e4, 5e3)
返回Inf
,这根本不是一个好的近似值!)。
在 horchler 的评论之后编辑
您可以使用该gammaln
函数获得相同的结果,但速度并不快。这两个近似值似乎完全不同:
n = 1e7;
m1 = floor(n/2);
m2 = ceil(n/2);
k = 1:m2;
% In logarithms
tic
out1 = [0 cumsum((log(n-k+1)) - log(k))];
out1(n+1:-1:m1+2) = out1(1:m2);
toc
% Elapsed time is 0.912649 seconds.
tic
k = 0:m2;
out2 = gammaln(n + 1) - gammaln(k + 1) - gammaln(n - k + 1);
out2(n+1:-1:m1+2) = out2(1:m2);
toc
% Elapsed time is 1.020188 seconds.
tmp = out2 - out1;
plot(tmp, '.')
prctile(tmp, [0 2.5 25 50 75 97.5 100])
% 1.0e-006 *
% -0.2217 -0.1462 -0.0373 0.0363 0.1225 0.2943 0.3846
添加三个gammaln
比添加n
对数更糟糕吗?或相反亦然?