这是我的傅立叶域过滤器,我认为它应该很有用:
#pragma once
#include <string>
#include <iostream>
#include "opencv2/opencv.hpp"
using namespace std;
using namespace cv;
//----------------------------------------------------------
// Recombinate quadrants
//----------------------------------------------------------
void Recomb(Mat &src,Mat &dst)
{
int cx = src.cols>>1;
int cy = src.rows>>1;
Mat tmp;
tmp.create(src.size(),src.type());
src(Rect(0, 0, cx, cy)).copyTo(tmp(Rect(cx, cy, cx, cy)));
src(Rect(cx, cy, cx, cy)).copyTo(tmp(Rect(0, 0, cx, cy)));
src(Rect(cx, 0, cx, cy)).copyTo(tmp(Rect(0, cy, cx, cy)));
src(Rect(0, cy, cx, cy)).copyTo(tmp(Rect(cx, 0, cx, cy)));
dst=tmp;
}
//----------------------------------------------------------
// Forward fft
//----------------------------------------------------------
void ForwardFFT(Mat &Src, Mat *FImg)
{
int M = getOptimalDFTSize( Src.rows );
int N = getOptimalDFTSize( Src.cols );
Mat padded;
copyMakeBorder(Src, padded, 0, M - Src.rows, 0, N - Src.cols, BORDER_CONSTANT, Scalar::all(0));
// Create complex image
// planes[0] image , planes[1] filled by zeroes
Mat planes[2] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg,DFT_SCALE);
// After tranform we also get complex image
split(complexImg, planes);
//
planes[0] = planes[0](Rect(0, 0, planes[0].cols & -2, planes[0].rows & -2));
planes[1] = planes[1](Rect(0, 0, planes[1].cols & -2, planes[1].rows & -2));
Recomb(planes[0],planes[0]);
Recomb(planes[1],planes[1]);
FImg[0]=planes[0].clone();
FImg[1]=planes[1].clone();
}
//----------------------------------------------------------
// Inverse FFT
//----------------------------------------------------------
void InverseFFT(Mat *FImg,Mat &Dst)
{
Recomb(FImg[0],FImg[0]);
Recomb(FImg[1],FImg[1]);
Mat complexImg;
merge(FImg, 2, complexImg);
// Inverse transform
dft(complexImg, complexImg, DFT_INVERSE);
split(complexImg, FImg);
FImg[0].copyTo(Dst);
}
//----------------------------------------------------------
// Forward FFT using Magnitude and phase
//----------------------------------------------------------
void ForwardFFT_Mag_Phase(Mat &src, Mat &Mag,Mat &Phase)
{
Mat planes[2];
ForwardFFT(src,planes);
Mag.zeros(planes[0].rows,planes[0].cols,CV_32F);
Phase.zeros(planes[0].rows,planes[0].cols,CV_32F);
cv::cartToPolar(planes[0],planes[1],Mag,Phase);
}
//----------------------------------------------------------
// Inverse FFT using Magnitude and phase
//----------------------------------------------------------
void InverseFFT_Mag_Phase(Mat &Mag,Mat &Phase, Mat &dst)
{
Mat planes[2];
planes[0].create(Mag.rows,Mag.cols,CV_32F);
planes[1].create(Mag.rows,Mag.cols,CV_32F);
cv::polarToCart(Mag,Phase,planes[0],planes[1]);
InverseFFT(planes,dst);
}
//----------------------------------------------------------
// MAIN
//----------------------------------------------------------
int main(int argc, char* argv[])
{
// src image
Mat img;
// Magnitude
Mat Mag;
// Phase
Mat Phase;
// Image loading
img=imread("d:\\ImagesForTest\\lena.jpg",0);
resize(img,img,Size(512,512));
// Image size
cout<<img.size().width<<endl;
cout<<img.size().height<<endl;
//
ForwardFFT_Mag_Phase(img,Mag,Phase);
//----------------------------------------------------------
// Filter
//----------------------------------------------------------
// draw ring
int R=100; // External radius
int r=30; // internal radius
Mat mask;
mask.create(Mag.cols,Mag.rows,CV_32F);
int cx = Mag.cols>>1;
int cy = Mag.rows>>1;
mask=1;
cv::circle(mask,cv::Point(cx,cy),R,CV_RGB(0,0,0),-1);
cv::circle(mask,cv::Point(cx,cy),r,CV_RGB(1,1,1),-1);
//mask=1-mask; // uncomment for inversion
//cv::multiply(Mag,mask,Mag); // uncomment to turn filter on
//cv::multiply(Phase,mask,Phase);
//----------------------------------------------------------
// Inverse transform
//----------------------------------------------------------
InverseFFT_Mag_Phase(Mag,Phase,img);
//----------------------------------------------------------
// Results output
//----------------------------------------------------------
//
Mat LogMag;
LogMag.zeros(Mag.rows,Mag.cols,CV_32F);
LogMag=(Mag+1);
cv::log(LogMag,LogMag);
//---------------------------------------------------
imshow("Magnitude Log", LogMag);
imshow("Phase", Phase);
// img - now in CV_32FC1 format,we need CV_8UC1 or scale it by factor 1.0/255.0
img.convertTo(img,CV_8UC1);
imshow("Filtering result", img);
//----------------------------------------------------------
// Wait key press
//----------------------------------------------------------
waitKey(0);
return 0;
}
抱歉,我无法重现您的结果我已经测试了代码并且它工作正常:
#pragma once
#include <string>
#include <iostream>
#include "opencv2/opencv.hpp"
using namespace std;
using namespace cv;
//----------------------------------------------------------
// Recombinate quadrants
//----------------------------------------------------------
void Recomb(Mat &src,Mat &dst)
{
int cx = src.cols>>1;
int cy = src.rows>>1;
Mat tmp;
tmp.create(src.size(),src.type());
src(Rect(0, 0, cx, cy)).copyTo(tmp(Rect(cx, cy, cx, cy)));
src(Rect(cx, cy, cx, cy)).copyTo(tmp(Rect(0, 0, cx, cy)));
src(Rect(cx, 0, cx, cy)).copyTo(tmp(Rect(0, cy, cx, cy)));
src(Rect(0, cy, cx, cy)).copyTo(tmp(Rect(cx, 0, cx, cy)));
dst=tmp;
}
//----------------------------------------------------------
// Forward fft
//----------------------------------------------------------
void ForwardFFT(Mat &Src, Mat *FImg)
{
int M = getOptimalDFTSize( Src.rows );
int N = getOptimalDFTSize( Src.cols );
Mat padded;
copyMakeBorder(Src, padded, 0, M - Src.rows, 0, N - Src.cols, BORDER_CONSTANT, Scalar::all(0));
// Create complex image
// planes[0] image , planes[1] filled by zeroes
Mat planes[2] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexImg;
merge(planes, 2, complexImg);
dft(complexImg, complexImg,DFT_SCALE);
// After tranform we also get complex image
split(complexImg, planes);
//
planes[0] = planes[0](Rect(0, 0, planes[0].cols & -2, planes[0].rows & -2));
planes[1] = planes[1](Rect(0, 0, planes[1].cols & -2, planes[1].rows & -2));
Recomb(planes[0],planes[0]);
Recomb(planes[1],planes[1]);
FImg[0]=planes[0].clone();
FImg[1]=planes[1].clone();
}
//----------------------------------------------------------
// Inverse FFT
//----------------------------------------------------------
void InverseFFT(Mat *FImg,Mat &Dst)
{
Recomb(FImg[0],FImg[0]);
Recomb(FImg[1],FImg[1]);
Mat complexImg;
merge(FImg, 2, complexImg);
// Inverse transform
dft(complexImg, complexImg, DFT_INVERSE);
split(complexImg, FImg);
FImg[0].copyTo(Dst);
}
//----------------------------------------------------------
// Forward FFT using Magnitude and phase
//----------------------------------------------------------
void ForwardFFT_Mag_Phase(Mat &src, Mat &Mag,Mat &Phase)
{
Mat planes[2];
ForwardFFT(src,planes);
Mag.zeros(planes[0].rows,planes[0].cols,CV_32F);
Phase.zeros(planes[0].rows,planes[0].cols,CV_32F);
cv::cartToPolar(planes[0],planes[1],Mag,Phase);
}
//----------------------------------------------------------
// Inverse FFT using Magnitude and phase
//----------------------------------------------------------
void InverseFFT_Mag_Phase(Mat &Mag,Mat &Phase, Mat &dst)
{
Mat planes[2];
planes[0].create(Mag.rows,Mag.cols,CV_32F);
planes[1].create(Mag.rows,Mag.cols,CV_32F);
cv::polarToCart(Mag,Phase,planes[0],planes[1]);
InverseFFT(planes,dst);
}
//----------------------------------------------------------
// MAIN
//----------------------------------------------------------
int main(int argc, char* argv[])
{
// src image
Mat img;
// Magnitude
Mat Mag;
// Phase
Mat Phase;
// Image loading (grayscale)
img=imread("d:\\ImagesForTest\\lena.jpg",0);
ForwardFFT_Mag_Phase(img,Mag,Phase);
//----------------------------------------------------------
// Inverse transform
//----------------------------------------------------------
InverseFFT_Mag_Phase(Mag,Phase,img);
img.convertTo(img,CV_8UC1);
imshow("Filtering result", img);
//----------------------------------------------------------
// Wait key press
//----------------------------------------------------------
waitKey(0);
return 0;
}
它得到与输入相同的图像。