haskell 最有用的特性之一是仅根据其类型知道函数是确定性的——它使测试变得更加容易。出于这个原因,我将我的设计基于尽可能限制随机性,并用随机变体包装核心非随机函数。使用类型类很容易做到这一点MonadRandom
,这是在需要随机值的 haskell 中编写代码的最佳方式。
为了好玩,我写了那个山生成器的控制台版本。它非常基础,有很多硬编码常量。但是,它确实提供了一个非常酷的 ascii 地形生成器 :)
请注意,在我的解决方案中,所有计算都隔离在纯非随机函数中。这可以很容易地测试,因为结果是确定性的。尽可能少地出现在IO
单子中。
import Control.Monad
import Control.Monad.Random
import Data.List
import Data.Function (on)
type Point = (Double, Double, Double)
type Terrain = [Point]
-- Non random code
flatTerrain :: Double -> Double -> Double -> Double -> Terrain
flatTerrain width length height spacing = [(realToFrac x, realToFrac y, realToFrac z)
| x <- [-width,-width+spacing..width], y <- [height], z <- [-length,-length+spacing..length]]
-- simple terrain displayer, uses ascii to render the area.
-- assumes the terrain points are all separated by the same amount
showTerrain :: Terrain -> String
showTerrain terrain = unlines $ map (concat . map showPoint) pointsByZ where
pointsByZ = groupBy ((==) `on` getZ) $ sortBy (compare `on` getZ) terrain
getZ (_, _, z) = z
getY (_, y, _) = y
largest = getY $ maximumBy (compare `on` getY) terrain
smallest = getY $ minimumBy (compare `on` getY) terrain
atPC percent = (largest - smallest) * percent + smallest
showPoint (_, y, _)
| y < atPC (1/5) = " "
| y < atPC (2/5) = "."
| y < atPC (3/5) = "*"
| y < atPC (4/5) = "^"
| otherwise = "#"
addHill :: Double -- Radius of hill
-> Point -- Position of hill
-> Terrain -> Terrain
addHill radius point = map (raisePoint radius point) where
raisePoint :: Double -> Point -> Point -> Point
-- I had to add max py here, otherwise new hills destroyed the
-- old hills with negative values.
raisePoint r (cx,cy,cz) (px,py,pz) = (px, max py (r^2 - ((cx - px)^2 + (cz - pz)^2)), pz)
-- Some random variants. IO is an instance of MonadRandom, so these function can be run in IO. They
-- can also be run in any other monad that has a MonadRandom instance, so they are pretty flexible.
-- creates a random point. Note that the ranges are hardcoded - an improvement would
-- be to be able to specify them, either through parameters, or through reading from a Reader
-- monad or similar
randomPoint :: (MonadRandom m) => m Point
randomPoint = do
x <- getRandomR (-30, 30)
y <- getRandomR (0,10)
z <- getRandomR (-30, 30)
return (x, y, z)
addRandomHill :: (MonadRandom m) => Terrain -> m Terrain
addRandomHill terrain = do
radius <- getRandomR (0, 8) -- hardcoded again
position <- randomPoint
return $ addHill radius position terrain
-- Add many random hills to the Terrain
addRandomHills :: (MonadRandom m) => Int -> Terrain -> m Terrain
addRandomHills count = foldr (>=>) return $ replicate count addRandomHill
-- testing code
test hillCount = do
let terrain = flatTerrain 30 30 0 2
withHills <- addRandomHills hillCount terrain
-- let oneHill = addHill 8 (0, 3, 0) terrain
-- putStrLn $ showTerrain oneHill
putStrLn $ showTerrain withHills
main = test 200
示例输出:
... .. ..*. .***^^^***.
... ... .***. .***^^^*^^*.
... .. .*^**......*^*^^^^.
. .***.***. ..*^^^*.
....*^^***^*. .^##^*.
..*.*^^^*****. .^###^..*
.**^^^^.***... .*^#^*.**
.***^##^**..*^^*.*****..**
....***^^##^*.*^##^****. ..
.......*^###^.*###^****.
.*********^###^**^##^***....
*^^^*^##^^^^###^.^^^*. .****..
*^^^^####*^####^..**. .******.
*^^^*####**^###*. .. .*******
*^#^^^##^***^^*. ...........***
*^^^**^^*..*... ..*******...***
.***..*^^*... ..*^^#^^^*......
...*^##^**. .*^^#####*.
.*^##^**....**^^####*. .***
.. ..*^^^*...*...**^^###^* *^#^
..****^^*. .... ...**###^*.^###
..*******.**. ..**^^^#^^..^###
.*****..*^^* ..**^##^**...*^##
.^^^^....*^^*..*^^^##^* ..**^^^
*###^*. .*^**..^###^^^*...*****
^####*.*..*^^*.^###^**.....*..
*###^**^**^^^*.*###^. .. .
.^^^***^^^^#^*.**^^**.
.....***^##^**^^^*^^*.
.*^^##^*^##^^^^^.
.*^^^^*.^##^*^^*.