683

如何实现 SQLIN和的等价物NOT IN

我有一个包含所需值的列表。这是场景:

df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
countries_to_keep = ['UK', 'China']

# pseudo-code:
df[df['country'] not in countries_to_keep]

我目前的做法如下:

df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
df2 = pd.DataFrame({'country': ['UK', 'China'], 'matched': True})

# IN
df.merge(df2, how='inner', on='country')

# NOT IN
not_in = df.merge(df2, how='left', on='country')
not_in = not_in[pd.isnull(not_in['matched'])]

但这似乎是一个可怕的组合。任何人都可以改进它吗?

4

11 回答 11

1239

您可以使用pd.Series.isin.

对于“IN”使用:something.isin(somewhere)

或者对于“不在”:~something.isin(somewhere)

作为一个工作示例:

import pandas as pd

>>> df
  country
0        US
1        UK
2   Germany
3     China
>>> countries_to_keep
['UK', 'China']
>>> df.country.isin(countries_to_keep)
0    False
1     True
2    False
3     True
Name: country, dtype: bool
>>> df[df.country.isin(countries_to_keep)]
  country
1        UK
3     China
>>> df[~df.country.isin(countries_to_keep)]
  country
0        US
2   Germany
于 2013-11-13T17:13:39.863 回答
122

使用.query()方法的替代解决方案:

In [5]: df.query("countries in @countries_to_keep")
Out[5]:
  countries
1        UK
3     China

In [6]: df.query("countries not in @countries_to_keep")
Out[6]:
  countries
0        US
2   Germany
于 2017-07-19T12:19:40.260 回答
79

如何为 pandas DataFrame 实现“in”和“not in”?

Pandas 提供了两种方法:Series.isin分别DataFrame.isin用于 Series 和 DataFrames。


基于 ONE Column 过滤 DataFrame(也适用于 Series)

最常见的场景是在特定列上应用isin条件来过滤 DataFrame 中的行。

df = pd.DataFrame({'countries': ['US', 'UK', 'Germany', np.nan, 'China']})
df
  countries
0        US
1        UK
2   Germany
3     China

c1 = ['UK', 'China']             # list
c2 = {'Germany'}                 # set
c3 = pd.Series(['China', 'US'])  # Series
c4 = np.array(['US', 'UK'])      # array

Series.isin接受各种类型作为输入。以下是获得所需内容的所有有效方法:

df['countries'].isin(c1)

0    False
1     True
2    False
3    False
4     True
Name: countries, dtype: bool

# `in` operation
df[df['countries'].isin(c1)]

  countries
1        UK
4     China

# `not in` operation
df[~df['countries'].isin(c1)]

  countries
0        US
2   Germany
3       NaN

# Filter with `set` (tuples work too)
df[df['countries'].isin(c2)]

  countries
2   Germany

# Filter with another Series
df[df['countries'].isin(c3)]

  countries
0        US
4     China

# Filter with array
df[df['countries'].isin(c4)]

  countries
0        US
1        UK

过滤许多列

有时,您会希望在多个列上使用一些搜索词应用“in”成员资格检查,

df2 = pd.DataFrame({
    'A': ['x', 'y', 'z', 'q'], 'B': ['w', 'a', np.nan, 'x'], 'C': np.arange(4)})
df2

   A    B  C
0  x    w  0
1  y    a  1
2  z  NaN  2
3  q    x  3

c1 = ['x', 'w', 'p']

要将isin条件应用于“A”和“B”列,请使用DataFrame.isin

df2[['A', 'B']].isin(c1)

      A      B
0   True   True
1  False  False
2  False  False
3  False   True

由此,要保留至少一列为 的行True,我们可以any沿第一个轴使用:

df2[['A', 'B']].isin(c1).any(axis=1)

0     True
1    False
2    False
3     True
dtype: bool

df2[df2[['A', 'B']].isin(c1).any(axis=1)]

   A  B  C
0  x  w  0
3  q  x  3

请注意,如果您想搜索每一列,您只需省略列选择步骤并执行

df2.isin(c1).any(axis=1)

同样,要保留所有列所在的行,Trueall请以与以前相同的方式使用。

df2[df2[['A', 'B']].isin(c1).all(axis=1)]

   A  B  C
0  x  w  0

Notable Mentions: numpy.isin, query, list comprehensions (string data)

除了上述方法之外,您还可以使用 numpy 等价物:numpy.isin.

# `in` operation
df[np.isin(df['countries'], c1)]

  countries
1        UK
4     China

# `not in` operation
df[np.isin(df['countries'], c1, invert=True)]

  countries
0        US
2   Germany
3       NaN

为什么值得考虑?由于开销较低,NumPy 函数通常比它们的 pandas 等效函数快一点。由于这是一个不依赖于索引对齐的元素操作,因此很少有这种方法不适合替代 pandas 的情况isin

Pandas 例程在处理字符串时通常是迭代的,因为字符串操作很难向量化。有很多证据表明这里的列表理解会更快。. 我们现在求助于in支票。

c1_set = set(c1) # Using `in` with `sets` is a constant time operation... 
                 # This doesn't matter for pandas because the implementation differs.
# `in` operation
df[[x in c1_set for x in df['countries']]]

  countries
1        UK
4     China

# `not in` operation
df[[x not in c1_set for x in df['countries']]]

  countries
0        US
2   Germany
3       NaN

但是,指定起来要麻烦得多,因此除非您知道自己在做什么,否则不要使用它。

最后,还有这个答案DataFrame.query中已经涵盖的内容。数字表达式 FTW!

于 2019-04-07T00:43:44.770 回答
18

我通常对这样的行进行通用过滤:

criterion = lambda row: row['countries'] not in countries
not_in = df[df.apply(criterion, axis=1)]
于 2013-11-13T17:14:32.250 回答
11

从答案中整理可能的解决方案:

对于 IN:df[df['A'].isin([3, 6])]

对于不在:

  1. df[-df["A"].isin([3, 6])]

  2. df[~df["A"].isin([3, 6])]

  3. df[df["A"].isin([3, 6]) == False]

  4. df[np.logical_not(df["A"].isin([3, 6]))]

于 2019-06-01T15:21:29.513 回答
10

我想过滤掉具有 BUSINESS_ID 且也在 dfProfilesBusIds 的 BUSINESS_ID 中的 dfbc 行

dfbc = dfbc[~dfbc['BUSINESS_ID'].isin(dfProfilesBusIds['BUSINESS_ID'])]
于 2017-07-13T03:12:17.360 回答
4
df = pd.DataFrame({'countries':['US','UK','Germany','China']})
countries = ['UK','China']

实施

df[df.countries.isin(countries)]

不像其他国家那样在其他国家实施:

df[df.countries.isin([x for x in np.unique(df.countries) if x not in countries])]
于 2018-04-04T11:51:01.763 回答
3

为什么没有人谈论各种过滤方法的性能?其实这里经常会弹出这个话题(见例子)。我对大型数据集进行了自己的性能测试。这是非常有趣和有启发性的。

df = pd.DataFrame({'animals': np.random.choice(['cat', 'dog', 'mouse', 'birds'], size=10**7), 
                   'number': np.random.randint(0,100, size=(10**7,))})

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 2 columns):
 #   Column   Dtype 
---  ------   ----- 
 0   animals  object
 1   number   int64 
dtypes: int64(1), object(1)
memory usage: 152.6+ MB
%%timeit
# .isin() by one column
conditions = ['cat', 'dog']
df[df.animals.isin(conditions)]
367 ms ± 2.34 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
# .query() by one column
conditions = ['cat', 'dog']
df.query('animals in @conditions')
395 ms ± 3.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
# .loc[]
df.loc[(df.animals=='cat')|(df.animals=='dog')]
987 ms ± 5.17 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
df[df.apply(lambda x: x['animals'] in ['cat', 'dog'], axis=1)]
41.9 s ± 490 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
new_df = df.set_index('animals')
new_df.loc[['cat', 'dog'], :]
3.64 s ± 62.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
new_df = df.set_index('animals')
new_df[new_df.index.isin(['cat', 'dog'])]
469 ms ± 8.98 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
s = pd.Series(['cat', 'dog'], name='animals')
df.merge(s, on='animals', how='inner')
796 ms ± 30.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

因此,isin结果证明该方法是最快的,而该方法apply()是最慢的,这并不奇怪。

于 2021-09-15T14:33:28.590 回答
3

你也可以.isin()在里面使用.query()

df.query('country.isin(@countries_to_keep).values')

# Or alternatively:
df.query('country.isin(["UK", "China"]).values')

要否定您的查询,请使用~

df.query('~country.isin(@countries_to_keep).values')
于 2022-02-22T20:38:25.217 回答
2

如果你想保持列表的顺序,一个技巧:

df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
countries_to_keep = ['Germany', 'US']


ind=[df.index[df['country']==i].tolist() for i in countries_to_keep]
flat_ind=[item for sublist in ind for item in sublist]

df.reindex(flat_ind)

   country
2  Germany
0       US
于 2020-09-16T10:38:18.407 回答
0

我的 2c 价值:我需要一个数据框的 in 和 ifelse 语句的组合,这对我有用。

sale_method = pd.DataFrame(model_data["Sale Method"].str.upper())
sale_method["sale_classification"] = np.where(
    sale_method["Sale Method"].isin(["PRIVATE"]),
    "private",
    np.where(
        sale_method["Sale Method"].str.contains("AUCTION"), "auction", "other"
    ),
)
于 2021-06-24T01:41:58.093 回答