我正在编写一个程序,该程序利用欧拉方法来计算小行星的轨道是否会导致与地球的碰撞。在主循环的每次迭代结束时,都有一个 if 语句,它使用小行星和地球之间的距离来确定是否会发生碰撞。当我尝试运行程序时,我得到一个溢出错误:数值结果超出范围,我认为这是由于我使用三角函数来转换和转换极坐标并且想知道我将如何限制这些函数返回的浮点值的大小以修复错误?
编辑:这是一个例外:
Traceback (most recent call last):
File "/home/austinlee/eclipse/plugins/org.python.pydev_2.7.0.2013032300/pysrc/pydevd.py", line 1397, in <module>
debugger.run(setup['file'], None, None)
File "/home/austinlee/eclipse/plugins/org.python.pydev_2.7.0.2013032300/pysrc/pydevd.py", line 1090, in run
pydev_imports.execfile(file, globals, locals) #execute the script
File "/home/austinlee/workspace/test/src/orbit.py", line 72, in <module>
if( Dist(x_a, x_e, y_a, y_e) < d_close):
File "/home/austinlee/workspace/test/src/orbit.py", line 37, in Dist
return sqrt((b-a)**2+(d-c)**2)
OverflowError: (34, 'Numerical result out of range')
这是代码:
from math import *
##position of earth and ast. relative to sun, units in m/s/kg
r_earth = 1.4959787E11
x_e = r_earth
y_e = 0
v_ye = 29784.3405
v_xe = 0
x_a = 1.37801793E11
y_a = 2.31478719E11
v_ya = -14263.6905
v_xa = -8490.32975
##constants- masses and radius's of objects
G = 6.67384E-11
M_sun = 1.988500E30
M_earth = 5.9726E24
R_earth = 6371.0E3
M_ast = 1.30E11
R_ast = 250
t = 0
delta_t = 10
t_max = 10000000
a_xe = 0
a_ye = 0
a_xa = 0
a_ya = 0
##Define Acceleration due to Gravity and Distance Formulas
def Grav(a,b):
return (G*a)/(b**2)
def Dist(a,b,c,d):
return sqrt((b-a)**2+(d-c)**2)
##Derived Constants
t_close = 0
d_close = Dist(x_a,x_e,y_a,y_e)
r_a = Dist(0,x_a,0,y_a)
theta_e = 0
theta_a = atan2(y_a,x_a)
v_angle = sqrt(v_xa**2+v_ya**2)/r_a
v_r1 = v_angle
v_r = sqrt(v_xa**2+v_ya**2)
T = 2* pi/(365*24*3600)
a_r = v_xa**2+v_ya**2
a_theta = (-Grav(M_sun, Dist(x_a,0,y_a,0))-Grav(M_earth,Dist(x_a,x_e,y_a,y_e)))**2-a_r**2
## Main Loop- assuming constant, circular orbit for earth (i.e M_ast is negligible)
for t in range(0, t_max):
t += delta_t
theta_e = T*t
x_e = r_earth*cos( theta_e )
y_e = r_earth*sin( theta_e )
## Convert asteroid parameters into polar coordinates and solve using Euler's Method
a_r = v_xa**2+v_ya**2
a_theta = (-Grav(M_sun, Dist(x_a,0,y_a,0))-Grav(M_earth,Dist(x_a,x_e,y_a,y_e)))**2-a_r**2
v_r1 = v_r
v_r += (a_r + r_a*v_angle**2)*delta_t
v_angle += (a_theta - 2*v_r1*v_angle)* delta_t
theta_a += r_a*theta_a*delta_t
r_a += v_r*delta_t
x_a = r_a*cos( theta_a)
y_a = r_a*sin( theta_a)
## Test for minimum distance
if( Dist(x_a, x_e, y_a, y_e) < d_close):
d_close = Dist( x_a, x_e, y_a, y_e)
t_close = t/(3600*24)
continue
##Print Results:
print "d_close: ", d_close/1000, "km"
print "t_close: ", t_close
if( d_close < R_earth):
print "Impact: Y"
else:
print "Impact: N"
提前致谢!