This looks like homework so I'll only give you pointers:
map
takes a procedure and applies to to every element of a list. Thus
(define (is-strings lst)
(map string? lst))
(is-strings '("hello" 5 sym "89")) ; (#t #f #f #t)
(define (add-two lst)
(map (lambda (x) (+ x 2)) lst))
(add-two '(3 4 5 6)) ; ==> (5 6 7 8)
filter
takes procedure that acts as a predicate. If #f the element is omitted, else the element is in the resulting list.
(define (filter-strings lst)
(filter string? lst))
(filter-strings '(3 5 "hey" test "you")) ; ==> ("hey" "you")
fold-right
takes an initial value and a procedure that takes an accumulated value and a element and supposed to generate a new value:
(fold-right + 0 '(3 4 5 6)) ; ==> 18, since its (+ 3 (+ 4 (+ 5 (+ 6 0))))
(fold-right cons '() '(a b c d)) ; ==> (a b c d) since its (cons a (cons b (cons c (cons d '()))))
(fold-right - 0 '(1 2 3)) ; ==> -2 since its (- 1 (- 2 (- 3 0)))
(fold-right (lambda (e1 acc) (if (<= acc e1) acc e1)) +Inf.0 '(7 6 2 3)) ; ==> 2
fold-right
has a left handed brother that is iterative and faster, though for list processing it would reverse the order after processing..
(fold-left (lambda (acc e1) (cons e1 acc)) '() '(1 2 3 4)) ; ==> (4 3 2 1)