在 RI 中有一个 data.frame,其中有几个变量,这些变量在几年内每月测量一次。我想得出每个变量的月平均值(使用所有年份)。理想情况下,这些新变量将全部放在一个新的 data.frame 中(携带 ID),下面我只是将新变量添加到 data.frame 中。我目前知道如何做到这一点的唯一方法(如下)似乎相当费力,我希望在 R 中可能有一种更聪明的方法来做到这一点,这不需要像我在下面所做的那样每个月都输入变量和变量。
# Example data.frame with only two years, two month, and two variables
# In the real data set there are always 12 months per year
# and there are at least four variables
df<- structure(list(ID = 1:4, ABC.M1Y2001 = c(10, 12.3, 45, 89), ABC.M2Y2001 = c(11.1,
34, 67.7, -15.6), ABC.M1Y2002 = c(-11.1, 9, 34, 56.5), ABC.M2Y2002 = c(12L,
13L, 11L, 21L), DEF.M1Y2001 = c(14L, 14L, 14L, 16L), DEF.M2Y2001 = c(15L,
15L, 15L, 12L), DEF.M1Y2002 = c(5, 12, 23.5, 34), DEF.M2Y2002 = c(6L,
34L, 61L, 56L)), .Names = c("ID", "ABC.M1Y2001", "ABC.M2Y2001","ABC.M1Y2002",
"ABC.M2Y2002", "DEF.M1Y2001", "DEF.M2Y2001", "DEF.M1Y2002",
"DEF.M2Y2002"), class = "data.frame", row.names = c(NA, -4L))
# list variable to average for ABC Month 1 across years
ABC.M1.names <- c("ABC.M1Y2001", "ABC.M1Y2002")
df <- transform(df, ABC.M1 = rowMeans(df[,ABC.M1.names], na.rm = TRUE))
# list variable to average for ABC Month 2 across years
ABC.M2.names <- c("ABC.M2Y2001", "ABC.M2Y2002")
df <- transform(df, ABC.M2 = rowMeans(df[,ABC.M2.names], na.rm = TRUE))
# and so forth for ABC
# ...
# list variables to average for DEF Month 1 across years
DEF.M1.names <- c("DEF.M1Y2001", "DEF.M1Y2002")
df <- transform(df, DEF.M1 = rowMeans(df[,DEF.M1.names], na.rm = TRUE))
# and so forth for DEF
# ...