您实际上有一个特殊情况,执行以下操作会更简单、更有效:
创建数据:
>>> arr
array([[[ 6, 9, 4],
[ 5, 2, 1],
[10, 15, 30]],
[[ 9, 0, 1],
[ 4, 6, 4],
[ 8, 3, 9]],
[[ 6, 7, 4],
[ 0, 1, 6],
[ 4, 0, 1]]])
期望值:
>>> index_pos = np.where((arr[:,:,0]==10) & (arr[:,:,1]==15) & (arr[:,:,2]==30))
>>> index_pos
(array([0]), array([2]))
使用广播同时执行此操作:
>>> arr == np.array([10,15,30])
array([[[False, False, False],
[False, False, False],
[ True, True, True]],
[[False, False, False],
[False, False, False],
[False, False, False]],
[[False, False, False],
[False, False, False],
[False, False, False]]], dtype=bool)
>>> np.where( np.all(arr == np.array([10,15,30]), axis=-1) )
(array([0]), array([2]))
如果您想要的索引不连续,您可以执行以下操作:
ind_vals = np.array([0,2])
where_mask = (arr[:,:,ind_vals] == values)
尽可能广播。
在@Jamie 的评论的推动下,需要考虑一些有趣的事情:
arr = np.random.randint(0,100,(5000,5000,3))
%timeit np.all(arr == np.array([10,15,30]), axis=-1)
1 loops, best of 3: 614 ms per loop
%timeit ((arr[:,:,0]==10) & (arr[:,:,1]==15) & (arr[:,:,2]==30))
1 loops, best of 3: 217 ms per loop
%timeit tmp = (arr == np.array([10,15,30])); (tmp[:,:,0] & tmp[:,:,1] & tmp[:,:,2])
1 loops, best of 3: 368 ms per loop
问题变成了,为什么会这样?:
首先检查:
%timeit (arr[:,:,0]==10)
10 loops, best of 3: 51.2 ms per loop
%timeit (arr == np.array([10,15,30]))
1 loops, best of 3: 300 ms per loop
人们会预计,arr == np.array([10,15,30])
在更坏的情况下,速度将是arr[:,:,0]==10
. 任何人都知道为什么不是这种情况?
然后在组合最终轴时,有很多方法可以实现这一点。
tmp = (arr == np.array([10,15,30]))
method1 = np.all(tmp,axis=-1)
method2 = (tmp[:,:,0] & tmp[:,:,1] & tmp[:,:,2])
method3 = np.einsum('ij,ij,ij->ij',tmp[:,:,0] , tmp[:,:,1] , tmp[:,:,2])
np.allclose(method1,method2)
True
np.allclose(method1,method3)
True
%timeit np.all(tmp,axis=-1)
1 loops, best of 3: 318 ms per loop
%timeit (tmp[:,:,0] & tmp[:,:,1] & tmp[:,:,2])
10 loops, best of 3: 68.2 ms per loop
%timeit np.einsum('ij,ij,ij->ij',tmp[:,:,0] , tmp[:,:,1] , tmp[:,:,2])
10 loops, best of 3: 38 ms per loop
einsum 加速在其他地方all
得到了很好的定义,但对我来说,和Continuous之间存在这样的差异似乎很奇怪&
。