给定一个“mlm”模型对象model
,您可以使用我编写的以下函数来获取系数的标准误差。这是非常有效的:没有循环,也无法访问summary.mlm()
.
std_mlm <- function (model) {
Rinv <- with(model$qr, backsolve(qr, diag(rank)))
## unscaled standard error
std_unscaled <- sqrt(rowSums(Rinv ^ 2)[order(model$qr$pivot)])
## residual standard error
sigma <- sqrt(colSums(model$residuals ^ 2) / model$df.residual)
## return final standard error
## each column corresponds to a model
"dimnames<-"(outer(std_unscaled, sigma), list = dimnames(model$coefficients))
}
一个简单的、可重复的例子
set.seed(0)
Y <- matrix(rnorm(50 * 5), 50) ## assume there are 5 responses
X <- rnorm(50) ## covariate
fit <- lm(Y ~ X)
我们都知道,通过以下方式提取估计系数很简单:
fit$coefficients ## or `coef(fit)`
# [,1] [,2] [,3] [,4] [,5]
#(Intercept) -0.21013925 0.1162145 0.04470235 0.08785647 0.02146662
#X 0.04110489 -0.1954611 -0.07979964 -0.02325163 -0.17854525
现在让我们应用我们的std_mlm
:
std_mlm(fit)
# [,1] [,2] [,3] [,4] [,5]
#(Intercept) 0.1297150 0.1400600 0.1558927 0.1456127 0.1186233
#X 0.1259283 0.1359712 0.1513418 0.1413618 0.1151603
我们当然可以调用summary.mlm
来检查我们的结果是否正确:
coef(summary(fit))
#Response Y1 :
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) -0.21013925 0.1297150 -1.6200072 0.1117830
#X 0.04110489 0.1259283 0.3264151 0.7455293
#
#Response Y2 :
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.1162145 0.1400600 0.8297485 0.4107887
#X -0.1954611 0.1359712 -1.4375183 0.1570583
#
#Response Y3 :
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.04470235 0.1558927 0.2867508 0.7755373
#X -0.07979964 0.1513418 -0.5272811 0.6004272
#
#Response Y4 :
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.08785647 0.1456127 0.6033574 0.5491116
#X -0.02325163 0.1413618 -0.1644831 0.8700415
#
#Response Y5 :
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 0.02146662 0.1186233 0.1809646 0.8571573
#X -0.17854525 0.1151603 -1.5504057 0.1276132
是的,都正确!