我使用了以下代码集:并且我需要检查 X_train 和 X_test 的准确性
以下代码适用于我对多标签类的分类问题
import numpy as np
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.multiclass import OneVsRestClassifier
X_train = np.array(["new york is a hell of a town",
"new york was originally dutch",
"the big apple is great",
"new york is also called the big apple",
"nyc is nice",
"people abbreviate new york city as nyc",
"the capital of great britain is london",
"london is in the uk",
"london is in england",
"london is in great britain",
"it rains a lot in london",
"london hosts the british museum",
"new york is great and so is london",
"i like london better than new york"])
y_train = [[0],[0],[0],[0]
,[0],[0],[1],[1]
,[1],[1],[1],[1]
,[2],[2]]
X_test = np.array(['nice day in nyc',
'the capital of great britain is london',
'i like london better than new york',
])
target_names = ['Class 1', 'Class 2','Class 3']
classifier = Pipeline([
('vectorizer', CountVectorizer(min_df=1,max_df=2)),
('tfidf', TfidfTransformer()),
('clf', OneVsRestClassifier(LinearSVC()))])
classifier.fit(X_train, y_train)
predicted = classifier.predict(X_test)
for item, labels in zip(X_test, predicted):
print '%s => %s' % (item, ', '.join(target_names[x] for x in labels))
输出
nice day in nyc => Class 1
the capital of great britain is london => Class 2
i like london better than new york => Class 3
我想检查训练和测试数据集之间的准确性。评分功能对我不起作用,它显示一个错误,指出不能接受多标签值
>>> classifier.score(X_train, X_test)
NotImplementedError:多标签分类器不支持分数
请帮助我获得训练和测试数据的准确性结果,并为我们的分类案例选择一种算法。