34

我知道将函数作为组键传递,每个索引值调用一次函数,返回值用作组名。我不知道如何在列值上调用函数。

所以我可以这样做:

people = pd.DataFrame(np.random.randn(5, 5), 
                      columns=['a', 'b', 'c', 'd', 'e'],
                      index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
def GroupFunc(x):
    if len(x) > 3:
        return 'Group1'
    else:
        return 'Group2'

people.groupby(GroupFunc).sum()

这会将数据分成两组,一组具有长度为 3 或以下的索引值,另一组具有长度为 3 或以上的索引值。但是如何传递其中一个列值?因此,例如,如果每个索引点的 d 列值大于 1。我意识到我可以执行以下操作:

people.groupby(people.a > 1).sum()

但我想知道如何在用户定义的函数中执行此操作以供将来参考。

就像是:

def GroupColFunc(x):
if x > 1:
    return 'Group1'
else:
    return 'Group2'

但是我怎么称呼它?我试过

people.groupby(GroupColFunc(people.a))

和类似的变体,但这不起作用。

如何将列值传递给函数?我将如何传递多个列值,例如对 people.a > people.b 进行分组?

4

1 回答 1

48

要按 > 1 分组,您可以定义您的函数,例如:

>>> def GroupColFunc(df, ind, col):
...     if df[col].loc[ind] > 1:
...         return 'Group1'
...     else:
...         return 'Group2'
... 

然后将其称为

>>> people.groupby(lambda x: GroupColFunc(people, x, 'a')).sum()
               a         b         c         d        e
Group2 -2.384614 -0.762208  3.359299 -1.574938 -2.65963

或者您只能使用匿名函数来执行此操作:

>>> people.groupby(lambda x: 'Group1' if people['b'].loc[x] > people['a'].loc[x] else 'Group2').sum()
               a         b         c         d         e
Group1 -3.280319 -0.007196  1.525356  0.324154 -1.002439
Group2  0.895705 -0.755012  1.833943 -1.899092 -1.657191

文档中所述,您还可以通过传递 Series 提供标签 -> 组名映射来进行分组:

>>> mapping = np.where(people['b'] > people['a'], 'Group1', 'Group2')
>>> mapping
Joe       Group2
Steve     Group1
Wes       Group2
Jim       Group1
Travis    Group1
dtype: string48
>>> people.groupby(mapping).sum()
               a         b         c         d         e
Group1 -3.280319 -0.007196  1.525356  0.324154 -1.002439
Group2  0.895705 -0.755012  1.833943 -1.899092 -1.657191
于 2013-10-27T08:28:57.990 回答