现在,您正在匹配并替换白色的一个特定整数值。但是,在您的原始位图中,白色会渗入其他颜色,因此这些白色块的边缘周围的白色值略有不同。
您需要更改算法以考虑颜色匹配容差。为此,您必须将像素和关键颜色分成三个颜色通道,并单独检查它们之间的差异是否在某个容差值内。
这样,您可以匹配边缘周围的这些白色像素。但即使增加了容差,您也不能只用红色替换匹配的像素。你会得到混叠的硬红色边缘,它看起来并不漂亮。不久前我写了一个类似的算法,并通过在 HSV 颜色空间中进行一些颜色混合来解决这个混叠问题:
public Bitmap changeColor(Bitmap src, int keyColor,
int replColor, int tolerance) {
Bitmap copy = src.copy(Bitmap.Config.ARGB_8888, true);
int width = copy.getWidth();
int height = copy.getHeight();
int[] pixels = new int[width * height];
src.getPixels(pixels, 0, width, 0, 0, width, height);
int sR = Color.red(keyColor);
int sG = Color.green(keyColor);
int sB = Color.blue(keyColor);
int tR = Color.red(replColor);
int tG = Color.green(replColor);
int tB = Color.blue(replColor);
float[] hsv = new float[3];
Color.RGBToHSV(tR, tG, tB, hsv);
float targetHue = hsv[0];
float targetSat = hsv[1];
float targetVal = hsv[2];
for(int i = 0; i < pixels.length; ++i) {
int pixel = pixels[i];
if(pixel == keyColor) {
pixels[i] = replColor;
} else {
int pR = Color.red(pixel);
int pG = Color.green(pixel);
int pB = Color.blue(pixel);
int deltaR = Math.abs(pR - sR);
int deltaG = Math.abs(pG - sG);
int deltaB = Math.abs(pB - sB);
if(deltaR <= tolerance && deltaG <= tolerance
&& deltaB <= tolerance) {
Color.RGBToHSV(pR, pG, pB, hsv);
hsv[0] = targetHue;
hsv[1] = targetSat;
hsv[2] *= targetVal;
int mixTrgColor = Color.HSVToColor(Color.alpha(pixel),
hsv);
pixels[i] = mixTrgColor;
}
}
}
copy.setPixels(pixels, 0, width, 0, 0, width, height);
return copy;
}
keyColor 和 replColor 是 ARGB 编码的整数值,例如 Color.WHITE 和 Color.RED。容差是一个从 0 到 255 的值,用于指定每个颜色通道的关键颜色匹配容差。我不得不稍微重写该片段以删除框架细节。我希望我没有犯任何错误。
作为警告:Java(在 Android 上)的图像处理速度非常慢。如果它对您来说不够快,您应该例如用 C 重写算法并使用 NDK。
更新:C中的颜色替换算法
这是用 C 语言编写的相同算法的实现。最后一个函数是将位图的像素数组作为参数的实际算法。您需要使用该函数声明创建一个头文件并设置一些 NDK 编译样板,并使用以下方法声明创建一个附加 Java 类:
native static void changeColor(int[] pixels, int width, int height, int keyColor, int replColor, int tolerance);
C实现:
#include <math.h>
#define MIN(x,y) ((x < y) ? x : y)
#define MAX(x,y) ((x > y) ? x : y)
int clamp_byte(int val) {
if(val > 255) {
return 255;
} else if(val < 0) {
return 0;
} else {
return val;
}
}
int encode_argb(uint8_t r, uint8_t g, uint8_t b, uint8_t a) {
return ((a & 0xFF) << 24) | ((r & 0xFF) << 16) | ((g & 0xFF) << 8) | (b & 0xFF);
}
int alpha(int c) {
return (c >> 24) & 0xFF;
}
int red(int c) {
return (c >> 16) & 0xFF;
}
int green(int c) {
return (c >> 8) & 0xFF;
}
int blue(int c) {
return c & 0xFF;
}
typedef struct struct_hsv {
uint16_t h;
uint8_t s;
uint8_t v;
} hsv;
// http://www.ruinelli.ch/rgb-to-hsv
hsv rgb255_to_hsv(uint8_t r, uint8_t g, uint8_t b) {
uint8_t min, max, delta;
hsv result;
int h;
min = MIN(r, MIN(g, b));
max = MAX(r, MAX(g, b));
result.v = max; // v, 0..255
delta = max - min; // 0..255, < v
if(delta != 0 && max != 0) {
result.s = ((int) delta) * 255 / max; // s, 0..255
if(r == max) {
h = (g - b) * 60 / delta; // between yellow & magenta
} else if(g == max) {
h = 120 + (b - r) * 60 / delta; // between cyan & yellow
} else {
h = 240 + (r - g) * 60 / delta; // between magenta & cyan
}
if(h < 0) h += 360;
result.h = h;
} else {
// r = g = b = 0
result.h = 0;
result.s = 0;
}
return result;
}
int hsv_to_argb(hsv color, uint8_t alpha) {
int i;
uint8_t r,g,b;
float f, p, q, t, h, s, v;
h = (float) color.h;
s = (float) color.s;
v = (float) color.v;
s /= 255;
if(s == 0) {
// achromatic (grey)
return encode_argb(color.v, color.v, color.v, alpha);
}
h /= 60; // sector 0 to 5
i = floor(h);
f = h - i; // factorial part of h
p = (unsigned char) (v * (1 - s));
q = (unsigned char) (v * (1 - s * f));
t = (unsigned char) (v * (1 - s * (1 - f)));
switch(i) {
case 0:
r = v;
g = t;
b = p;
break;
case 1:
r = q;
g = v;
b = p;
break;
case 2:
r = p;
g = v;
b = t;
break;
case 3:
r = p;
g = q;
b = v;
break;
case 4:
r = t;
g = p;
b = v;
break;
default: // case 5:
r = v;
g = p;
b = q;
break;
}
return encode_argb(r, g, b, alpha);
}
JNIEXPORT void JNICALL Java_my_package_name_ClassName_changeColor(
JNIEnv* env, jclass clazz, jintArray bitmapArray, jint width, jint height,
jint keyColor, jint replColor, jint tolerance) {
jint* pixels = (*env)->GetPrimitiveArrayCritical(env, bitmapArray, 0);
int sR = red(keyColor);
int sG = green(keyColor);
int sB = blue(keyColor);
int tR = red(replColor);
int tG = green(replColor);
int tB = blue(replColor);
hsv cHsv = rgb255_to_hsv(tR, tG, tB);
int targetHue = cHsv.h;
int targetSat = cHsv.s;
int targetVal = cHsv.v;
int i;
int max = width * height;
for(i = 0; i < max; ++i) {
int pixel = pixels[i];
if(pixel == keyColor) {
pixels[i] = replColor;
} else {
int pR = red(pixel);
int pG = green(pixel);
int pB = blue(pixel);
int deltaR = abs(pR - sR);
int deltaG = abs(pG - sG);
int deltaB = abs(pB - sB);
if(deltaR <= tolerance && deltaG <= tolerance
&& deltaB <= tolerance) {
cHsv = rgb255_to_hsv(pR, pG, pB);
cHsv.h = targetHue;
cHsv.s = targetSat;
int newValue = ((int) cHsv.v * targetVal) / 255;
cHsv.v = newValue;
int mixTrgColor = hsv_to_argb(cHsv, alpha(pixel));
pixels[i] = mixTrgColor;
}
}
}
(*env)->ReleasePrimitiveArrayCritical(env, bitmapArray, pixels, 0);
}