这是一个示例蛮力程序,用于枚举所有可能的向量,然后测试每个向量的总和以查看它是否与所需的总和匹配。
- 假设
n
=“数字”中的向量长度
- 假设每个向量“数字”由一个
unsigned
数量表示
- 假设
k
= 最大“数字”值 + 1
- 向量空间的大小由
k
^给出n
- 将此空间划分为要由每个线程处理的连续向量组: (
k
^ n
)/grid_size
- 为每个线程生成起始向量(即每组中的起始向量)
- 然后每个线程循环通过测试向量和并在必要时增加计数,然后“增加”向量,直到每个线程处理完分配给它的连续向量组
该程序:
#include <stdio.h>
#include <thrust/host_vector.h>
#include <sys/time.h>
#include <time.h>
#define MAX_N 12
#define nTPB 256
#define GRIDSIZE (32*nTPB)
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
// thrust code is to quickly prototype a CPU based
// method for verification
int increment(thrust::host_vector<unsigned> &data, unsigned max){
int pos = 0;
int done = 0;
int finished = 0;
while(!done){
data[pos]++;
if (data[pos] >= max) {
data[pos] = 0;
pos++;
if (pos >= data.size()){
done = 1;
finished = 1;
}
}
else done = 1;
}
return finished;
}
__constant__ unsigned long powers[MAX_N];
__device__ unsigned vec_sum(unsigned *vector, int size){
unsigned sum = 0;
for (int i=0; i<size; i++) sum += vector[(i*nTPB)];
return sum;
}
__device__ void create_vector(unsigned long index, unsigned *vector, int size){
unsigned long residual = index;
unsigned pos = size;
while ((residual > 0) && (pos > 0)){
unsigned long temp = residual/powers[pos-1];
vector[(pos-1)*nTPB] = temp;
residual -= temp*powers[pos-1];
pos--;
}
while (pos>0) {
vector[(pos-1)*nTPB] = 0;
pos--;
}
}
__device__ void increment_vector(unsigned *vector, int size, int k){
int pos = 0;
int done = 0;
while(!done){
vector[(pos*nTPB)]++;
if (vector[pos*nTPB] >= k) {
vector[pos*nTPB] = 0;
pos++;
if (pos >= size){
done = 1;
}
}
else done = 1;
}
}
__global__ void find_vector_match(unsigned long long int *count, int k, int n, unsigned sum){
__shared__ unsigned vecs[MAX_N *nTPB];
unsigned *vec = &(vecs[threadIdx.x]);
unsigned long idx = threadIdx.x+blockDim.x*blockIdx.x;
if (idx < (k*powers[n-1])){
unsigned long vec_count = 0;
unsigned long vecs_per_thread = (k*powers[n-1])/(gridDim.x*blockDim.x);
vecs_per_thread++;
unsigned long vec_num = idx*vecs_per_thread;
create_vector((vec_num), vec, n);
while ((vec_count < vecs_per_thread) && (vec_num < (k*powers[n-1]))){
if (vec_sum(vec, n) == sum) atomicAdd(count, 1UL);
increment_vector(vec, n, k);
vec_count++;
vec_num++;
}
}
}
int main(){
// calculate on CPU first for verification
struct timeval t1, t2, t3;
int n, k, sum;
printf("Enter the length of vector (maximum: %d) n=", MAX_N);
scanf("%d",&n);
printf("Enter the max value of vector elements k=");
scanf("%d",&k);
printf("Enter the sum of vector elements sum=");
scanf("%d",&sum);
int count = 0;
gettimeofday(&t1, NULL);
k++;
thrust::host_vector<unsigned> test(n);
thrust::fill(test.begin(), test.end(), 0);
int finished = 0;
do{
if (thrust::reduce(test.begin(), test.end()) == sum) count++;
finished = increment(test, k);
}
while (!finished);
gettimeofday(&t2, NULL);
printf("CPU count = %d, in %d seconds\n", count, t2.tv_sec - t1.tv_sec);
unsigned long h_powers[MAX_N];
h_powers[0] = 1;
if (n < MAX_N)
for (int i = 1; i<n; i++) h_powers[i] = h_powers[i-1]*k;
cudaMemcpyToSymbol(powers, h_powers, MAX_N*sizeof(unsigned long));
cudaCheckErrors("cudaMemcpyToSymbolfail");
unsigned long long int *h_count, *d_count;
h_count = (unsigned long long int *)malloc(sizeof(unsigned long long int));
cudaMalloc((void **)&d_count, sizeof(unsigned long long int));
cudaCheckErrors("cudaMalloc fail");
*h_count = 0;
cudaMemcpy(d_count, h_count, sizeof(unsigned long long int), cudaMemcpyHostToDevice);
cudaCheckErrors("cudaMemcpy H2D fail");
find_vector_match<<<(GRIDSIZE + nTPB -1)/nTPB, nTPB>>>(d_count, k, n, sum);
cudaMemcpy(h_count, d_count, sizeof(unsigned long long int), cudaMemcpyDeviceToHost);
cudaCheckErrors("cudaMemcpy D2H fail");
gettimeofday(&t3, NULL);
printf("GPU count = %d, in %d seconds\n", *h_count, t3.tv_sec - t2.tv_sec);
return 0;
}
编译:
$ nvcc -O3 -arch=sm_20 -o t260 t260.cu
样本输出:
$ ./t260
Enter the length of vector (maximum: 12) n=2
Enter the max value of vector elements k=3
Enter the sum of vector elements sum=4
CPU count = 3, in 0 seconds
GPU count = 3, in 0 seconds
$ ./t260
Enter the length of vector (maximum: 12) n=5
Enter the max value of vector elements k=3
Enter the sum of vector elements sum=10
CPU count = 101, in 0 seconds
GPU count = 101, in 0 seconds
$ ./t260
Enter the length of vector (maximum: 12) n=9
Enter the max value of vector elements k=9
Enter the sum of vector elements sum=20
CPU count = 2714319, in 12 seconds
GPU count = 2714319, in 1 seconds
$ ./t260
Enter the length of vector (maximum: 12) n=10
Enter the max value of vector elements k=9
Enter the sum of vector elements sum=20
CPU count = 9091270, in 123 seconds
GPU count = 9091270, in 4 seconds
因此,对于较大的问题规模,朴素的蛮力 GPU 代码似乎比朴素的蛮力单线程 CPU 代码快约 30 倍。(...在我的特定机器设置上:CPU = Xeon X5560,GPU = Quadro5000,CentOS 5.5,CUDA 5.0)