我正在尝试对包含图像的数据集进行主成分分析,但是每当我想从 sklearn.decomposition 模块应用 pca.transform 时,我都会不断收到此错误:*AttributeError: 'PCA' object has no attribute 'mean_'*。我知道这个错误意味着什么,但我不知道如何解决它。我想你们中的一些人知道如何解决这个问题。
感谢您的帮助
我的代码:
from sklearn import svm
import numpy as np
import glob
import os
from PIL import Image
from sklearn.decomposition import PCA
image_dir1 = "C:\Users\private\Desktop\K FOLDER\private\train"
image_dir2 = "C:\Users\private\Desktop\K FOLDER\private\test1"
Standard_size = (300,200)
pca = PCA(n_components = 10)
file_open = lambda x,y: glob.glob(os.path.join(x,y))
def matrix_image(image_path):
"opens image and converts it to a m*n matrix"
image = Image.open(image_path)
print("changing size from %s to %s" % (str(image.size), str(Standard_size)))
image = image.resize(Standard_size)
image = list(image.getdata())
image = map(list,image)
image = np.array(image)
return image
def flatten_image(image):
"""
takes in a n*m numpy array and flattens it to
an array of the size (1,m*n)
"""
s = image.shape[0] * image.shape[1]
image_wide = image.reshape(1,s)
return image_wide[0]
if __name__ == "__main__":
train_images = file_open(image_dir1,"*.jpg")
test_images = file_open(image_dir2,"*.jpg")
train_set = []
test_set = []
"Loop over all images in files and modify them"
train_set = [flatten_image(matrix_image(image)) for image in train_images]
test_set = [flatten_image(matrix_image(image)) for image in test_images]
train_set = np.array(train_set)
test_set = np.array(test_set)
train_set = pca.fit_transform(train_set) "line where error occurs"
test_set = pca.fit_transform(test_set)
完整追溯:
Traceback (most recent call last):
File "C:\Users\Private\workspace\final_submission\src\d.py", line 54, in <module>
train_set = pca.transform(train_set)
File "C:\Python27\lib\site-packages\sklearn\decomposition\pca.py", line 298, in transform
if self.mean_ is not None:
AttributeError: 'PCA' object has no attribute 'mean_'
Edit1: 所以我尝试在转换模型之前对其进行拟合,现在我遇到了一个更奇怪的错误。我查了一下,它涉及 f2py,这是一个将 Fortran 移植到 Python 的模块,它是 Numpy 库的一部分。
File "C:\Users\Private\workspace\final_submission\src\d.py", line 54, in <module>
pca.fit(train_set)
File "C:\Python27\lib\site-packages\sklearn\decomposition\pca.py", line 200, in fit
self._fit(X)
File "C:\Python27\lib\site-packages\sklearn\decomposition\pca.py", line 249, in _fit
U, S, V = linalg.svd(X, full_matrices=False)
File "C:\Python27\lib\site-packages\scipy\linalg\decomp_svd.py", line 100, in svd
full_matrices=full_matrices, overwrite_a = overwrite_a)
ValueError: failed to create intent(cache|hide)|optional array-- must have defined dimensions but got (0,)
编辑2:
所以我检查了我的 train_set 和 data_set 是否包含任何数据,但它们没有。我检查了我的 image_dirs,它们包含正确的位置(为了清楚起见,我通过转到实际文件、查看图像的属性并复制位置来获取它们)。故障应该出在其他地方。