14

假设我有一个简单的数据集。也许以字典的形式,它看起来像这样:

{1:5, 2:10, 3:15, 4:20, 5:25}

(顺序总是升序)。我想做的是从逻辑上弄清楚下一个数据点最有可能是什么。例如,在这种情况下,它将是{6: 30}

最好的方法是什么?

4

5 回答 5

10

您还可以使用 numpy 的polyfit

data = np.array([[1,5], [2,10], [3,15], [4,20], [5,25]])
fit = np.polyfit(data[:,0], data[:,1] ,1) #The use of 1 signifies a linear fit.

fit
[  5.00000000e+00   1.58882186e-15]  #y = 5x + 0

line = np.poly1d(fit)
new_points = np.arange(5)+6

new_points
[ 6, 7, 8, 9, 10]

line(new_points)
[ 30.  35.  40.  45.  50.]

这使您可以很容易地更改多项式拟合的程度,因为该函数polyfit采用以下参数np.polyfit(x data, y data, degree)。显示的是线性拟合,其中返回的数组看起来像fit[0]*x^n + fit[1]*x^(n-1) + ... + fit[n-1]*x^0任何 degree n。该poly1d函数允许您将此数组转换为返回任意给定值的多项式值的函数x

一般来说,如果没有很好理解的模型,外推最多只会产生零星的结果。


指数曲线拟合

from scipy.optimize import curve_fit

def func(x, a, b, c):
    return a * np.exp(-b * x) + c

x = np.linspace(0,4,5)
y = func(x, 2.5, 1.3, 0.5)
yn = y + 0.2*np.random.normal(size=len(x))

fit ,cov = curve_fit(func, x, yn)
fit
[ 2.67217435  1.21470107  0.52942728]         #Variables

y
[ 3.          1.18132948  0.68568395  0.55060478  0.51379141]  #Original data

func(x,*fit)
[ 3.20160163  1.32252521  0.76481773  0.59929086  0.5501627 ]  #Fit to original + noise
于 2013-10-16T14:49:13.023 回答
8

正如对相关问题的回答所指出的那样,从 scipy 的 0.17.0 版本开始, scipy.interpolate.interp1d中有一个选项允许线性外推。在你的情况下,你可以这样做:

>>> import numpy as np
>>> from scipy import interpolate

>>> x = [1, 2, 3, 4, 5]
>>> y = [5, 10, 15, 20, 25]
>>> f = interpolate.interp1d(x, y, fill_value = "extrapolate")
>>> print(f(6))
30.0
于 2016-06-30T10:34:22.433 回答
7

在 Python 聊天中与您讨论后 - 您正在将数据拟合成指数。这应该提供一个相对较好的指标,因为您不是在寻找长期外推。

import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

def exponential_fit(x, a, b, c):
    return a*np.exp(-b*x) + c

if __name__ == "__main__":
    x = np.array([0, 1, 2, 3, 4, 5])
    y = np.array([30, 50, 80, 160, 300, 580])
    fitting_parameters, covariance = curve_fit(exponential_fit, x, y)
    a, b, c = fitting_parameters
    
    next_x = 6
    next_y = exponential_fit(next_x, a, b, c)
    
    plt.plot(y)
    plt.plot(np.append(y, next_y), 'ro')
    plt.show()

最右侧轴上的红点显示下一个“预测”点。

于 2013-10-17T16:46:22.750 回答
1

由于您的数据近似线性,您可以进行线性回归,然后使用该回归的结果来计算下一个点,使用y = w[0]*x + w[1](保留y = mx + b的链接示例中的符号)。

如果您的数据不是近似线性的,并且您没有其他一些回归理论形式,那么一般外推(使用多项式或样条)的可靠性要低得多,因为它们可能会超出已知数据点的范围。例如,请参阅此处接受的答案。

于 2013-10-16T14:42:38.413 回答
0

使用scipy.interpolate.splrep

>>> from scipy.interpolate import splrep, splev
>>> d = {1:5, 2:10, 3:15, 4:20, 5:25}
>>> x, y = zip(*d.items())
>>> spl = splrep(x, y, k=1, s=0)
>>> splev(6, spl)
array(30.0)
>>> splev(7, spl)
array(35.0)
>>> int(splev(7, spl))
35
>>> splev(10000000000, spl)
array(50000000000.0)
>>> int(splev(10000000000, spl))
50000000000L

请参阅如何使 scipy.interpolate 给出超出输入范围的外推结果?

于 2013-10-16T14:44:49.013 回答