如果您不熟悉解析几何(或复数几何),这听起来可能有点矫枉过正,但是当我对零件的运动进行验证时,我想出了一个非常优雅的数学解决方案。
骑士的移动位于可以定义为 (x-x_0)^2+(y-y_0)^2=5 的圆上,其中 x_0 和 y_0 是骑士的当前坐标。如果切换到极坐标,则可以使用以下简单代码获取所有可能的坐标:
import math
def knight_moves(x,y):
new_positions=[]
r=math.sqrt(5) #radius of the circle
for phi in [math.atan(2),math.atan(1/2)]: #angles in radians
for quadrant in range(4):
angle=phi+quadrant*math.pi/2 # add 0, 90, 180, 270 degrees in radians
new_x=round(x+r*math.cos(angle))
new_y=round(y+r*math.sin(angle))
if max(new_x,new_y,7-new_x,7-new_y)<=7: #validation whether the move is in grid
new_positions.append([new_x,new_y])
return(new_positions)
def validate_knight_move(x,y,x_0,y_0):
return((x-x_0)**2+(y-y_0)**2==5)
x_0=2
y_0=4
moves=knight_moves(x_0,y_0)
print(moves)
validation=[validate_knight_move(move[0],move[1],x_0,y_0) for move in moves]
print(validation)
[[3, 6], [0, 5], [1, 2], [4, 3], [4, 5], [1, 6], [0, 3], [3, 2]]
[True, True, True, True, True, True, True, True]
在这里指出这一点很好,验证位置比直接构造位置要简单得多。因此,最好尝试一下所有可能的移动是否都在圆上:
def knight_moves2(x,y):
new_positions=[]
for dx in [-2,-1,1,2]:
for dy in [-2,-1,1,2]:
if(validate_knight_move(x+dx,y+dy,x,y)): #is knight move?
if max(x+dx,y+dy,7-(x+dx),7-(y+dy))<=7: #validation whether the move is in grid
new_positions.append([x+dx,y+dy])
return(new_positions)
new_positions=knight_moves2(x_0,y_0)
print(new_positions)
[[0, 3], [0, 5], [1, 2], [1, 6], [3, 2], [3, 6], [4, 3], [4, 5]]