这是使用NumPy datetime64 和 timedelta64 算术的替代方法。对于小型 DataFrame,它似乎要快一些,而对于较大的 DataFrame,它似乎要快得多:
import numpy as np
import pandas as pd
df = pd.DataFrame({'M':[1,2,3,4], 'D':[6,7,8,9], 'Y':[1990,1991,1992,1993]})
#    D  M     Y
# 0  6  1  1990
# 1  7  2  1991
# 2  8  3  1992
# 3  9  4  1993
y = np.array(df['Y']-1970, dtype='<M8[Y]')
m = np.array(df['M']-1, dtype='<m8[M]')
d = np.array(df['D']-1, dtype='<m8[D]')
dates2 = pd.Series(y+m+d)
# 0   1990-01-06
# 1   1991-02-07
# 2   1992-03-08
# 3   1993-04-09
# dtype: datetime64[ns]
In [214]: df = pd.concat([df]*1000)
In [215]: %timeit pd.to_datetime((df['Y']*10000+df['M']*100+df['D']).astype('int'), format='%Y%m%d')
100 loops, best of 3: 4.87 ms per loop
In [216]: %timeit pd.Series(np.array(df['Y']-1970, dtype='<M8[Y]')+np.array(df['M']-1, dtype='<m8[M]')+np.array(df['D']-1, dtype='<m8[D]'))
1000 loops, best of 3: 839 µs per loop
这是一个帮助函数,可以使它更易于使用:
def combine64(years, months=1, days=1, weeks=None, hours=None, minutes=None,
              seconds=None, milliseconds=None, microseconds=None, nanoseconds=None):
    years = np.asarray(years) - 1970
    months = np.asarray(months) - 1
    days = np.asarray(days) - 1
    types = ('<M8[Y]', '<m8[M]', '<m8[D]', '<m8[W]', '<m8[h]',
             '<m8[m]', '<m8[s]', '<m8[ms]', '<m8[us]', '<m8[ns]')
    vals = (years, months, days, weeks, hours, minutes, seconds,
            milliseconds, microseconds, nanoseconds)
    return sum(np.asarray(v, dtype=t) for t, v in zip(types, vals)
               if v is not None)
In [437]: combine64(df['Y'], df['M'], df['D'])
Out[437]: array(['1990-01-06', '1991-02-07', '1992-03-08', '1993-04-09'], dtype='datetime64[D]')