4

我需要有效地计算给定数组中每个点到另一个数组中每个其他点的欧几里得加权距离。这是我拥有的按预期工作的代码:x,yx,y

import numpy as np
import random

def rand_data(integ):
    '''
    Function that generates 'integ' random values between [0.,1.)
    '''
    rand_dat = [random.random() for _ in range(integ)]

    return rand_dat

def weighted_dist(indx, x_coo, y_coo):
    '''
    Function that calculates *weighted* euclidean distances.
    '''
    dist_point_list = []
    # Iterate through every point in array_2.
    for indx2, x_coo2 in enumerate(array_2[0]):
        y_coo2 = array_2[1][indx2]
        # Weighted distance in x.
        x_dist_weight = (x_coo-x_coo2)/w_data[0][indx] 
        # Weighted distance in y.
        y_dist_weight = (y_coo-y_coo2)/w_data[1][indx] 
        # Weighted distance between point from array_1 passed and this point
        # from array_2.
        dist = np.sqrt(x_dist_weight**2 + y_dist_weight**2)
        # Append weighted distance value to list.
        dist_point_list.append(round(dist, 8))

    return dist_point_list


# Generate random x,y data points.
array_1 = np.array([rand_data(10), rand_data(10)], dtype=float)

# Generate weights for each x,y coord for points in array_1.
w_data = np.array([rand_data(10), rand_data(10)], dtype=float)

# Generate second larger array.
array_2 = np.array([rand_data(100), rand_data(100)], dtype=float)


# Obtain *weighted* distances for every point in array_1 to every point in array_2.
dist = []
# Iterate through every point in array_1.
for indx, x_coo in enumerate(array_1[0]):
    y_coo = array_1[1][indx]
    # Call function to get weighted distances for this point to every point in
    # array_2.
    dist.append(weighted_dist(indx, x_coo, y_coo))

最终列表dist包含与第一个数组中的点一样多的子列表,每个子列表中的元素与第二个数组中的点一样多(加权距离)。

我想知道是否有办法让这段代码更有效,也许使用cdist函数,因为当数组有很多元素(在我的情况下它们有)并且我必须检查时,这个过程变得非常昂贵许多阵列的距离(我也有)

4

4 回答 4

5

@Evan 和 @Martinis Group 走在正确的轨道上——为了扩展 Evan 的答案,这里有一个函数,它使用广播来快速计算 n 维加权欧几里德距离,而无需 Python 循环:

import numpy as np

def fast_wdist(A, B, W):
    """
    Compute the weighted euclidean distance between two arrays of points:

    D{i,j} = 
    sqrt( ((A{0,i}-B{0,j})/W{0,i})^2 + ... + ((A{k,i}-B{k,j})/W{k,i})^2 )

    inputs:
        A is an (k, m) array of coordinates
        B is an (k, n) array of coordinates
        W is an (k, m) array of weights

    returns:
        D is an (m, n) array of weighted euclidean distances
    """

    # compute the differences and apply the weights in one go using
    # broadcasting jujitsu. the result is (n, k, m)
    wdiff = (A[np.newaxis,...] - B[np.newaxis,...].T) / W[np.newaxis,...]

    # square and sum over the second axis, take the sqrt and transpose. the
    # result is an (m, n) array of weighted euclidean distances
    D = np.sqrt((wdiff*wdiff).sum(1)).T

    return D

为了检查这是否正常,我们将它与使用嵌套 Python 循环的较慢版本进行比较:

def slow_wdist(A, B, W):

    k,m = A.shape
    _,n = B.shape
    D = np.zeros((m, n))

    for ii in xrange(m):
        for jj in xrange(n):
            wdiff = (A[:,ii] - B[:,jj]) / W[:,ii]
            D[ii,jj] = np.sqrt((wdiff**2).sum())
    return D

首先,让我们确保这两个函数给出相同的答案:

# make some random points and weights
def setup(k=2, m=100, n=300):
    return np.random.randn(k,m), np.random.randn(k,n),np.random.randn(k,m)

a, b, w = setup()
d0 = slow_wdist(a, b, w)
d1 = fast_wdist(a, b, w)

print np.allclose(d0, d1)
# True

不用说,使用广播而不是 Python 循环的版本要快几个数量级:

%%timeit a, b, w = setup()
slow_wdist(a, b, w)
# 1 loops, best of 3: 647 ms per loop

%%timeit a, b, w = setup()
fast_wdist(a, b, w)
# 1000 loops, best of 3: 620 us per loop
于 2013-10-10T00:52:58.860 回答
3

cdist如果您不需要加权距离,则可以使用。如果您需要加权距离和性能,请创建一个具有适当输出大小的数组,并使用 Numba 或 Parakeet 等自动加速器,或使用 Cython 手动调整代码。

于 2013-10-09T16:15:04.757 回答
2

您可以使用如下所示的代码来避免循环:

def compute_distances(A, B, W):
    Ax = A[:,0].reshape(1, A.shape[0])
    Bx = B[:,0].reshape(A.shape[0], 1)
    dx = Bx-Ax

    # Same for dy
    dist = np.sqrt(dx**2 + dy**2) * W
    return dist

只要您有足够的内存用于数组,这将在 python 中运行得更快。

于 2013-10-09T16:57:16.160 回答
0

您可以尝试删除平方根,因为如果 a>b,则遵循 a 平方 > b 平方......并且计算机通常在平方根上真的很慢。

于 2013-10-09T16:36:28.310 回答