我正在使用 ANN kdtree 库来查找最近的邻居。我想找到距离最短的最近邻居。我在下面包含了常规代码(来自 ANN 库)。很明显,每次找到邻居时我都可以检查距离,但我正在寻找一种更有效的方法。
void ANNkd_tree::annkSearch(
ANNpoint q, // the query point
int k, // number of near neighbors to return
ANNidxArray nn_idx, // nearest neighbor indices (returned)
ANNdistArray dd, // the approximate nearest neighbor
double eps) // the error bound
{
ANNkdDim = dim; // copy arguments to static equivs
ANNkdQ = q;
ANNkdPts = pts;
ANNptsVisited = 0; // initialize count of points visited
if (k > n_pts) { // too many near neighbors?
annError("Requesting more near neighbors than data points", ANNabort);
}
ANNkdMaxErr = ANN_POW(1.0 + eps);
ANN_FLOP(2) // increment floating op count
ANNkdPointMK = new ANNmin_k(k); // create set for closest k points
// search starting at the root
root->ann_search(annBoxDistance(q, bnd_box_lo, bnd_box_hi, dim));
for (int i = 0; i < k; i++) { // extract the k-th closest points
dd[i] = ANNkdPointMK->ith_smallest_key(i);
nn_idx[i] = ANNkdPointMK->ith_smallest_info(i);
}
delete ANNkdPointMK; // deallocate closest point set
}
//----------------------------------------------------------------------
// kd_split::ann_search - search a splitting node
//----------------------------------------------------------------------
void ANNkd_split::ann_search(ANNdist box_dist)
{
// check dist calc term condition
if (ANNmaxPtsVisited != 0 && ANNptsVisited > ANNmaxPtsVisited) return;
// distance to cutting plane
ANNcoord cut_diff = ANNkdQ[cut_dim] - cut_val;
if (cut_diff < 0) { // left of cutting plane
child[ANN_LO]->ann_search(box_dist);// visit closer child first
ANNcoord box_diff = cd_bnds[ANN_LO] - ANNkdQ[cut_dim];
if (box_diff < 0) // within bounds - ignore
box_diff = 0;
// distance to further box
box_dist = (ANNdist) ANN_SUM(box_dist,
ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
// visit further child if close enough
if (box_dist * ANNkdMaxErr < ANNkdPointMK->max_key())
child[ANN_HI]->ann_search(box_dist);
}
else { // right of cutting plane
child[ANN_HI]->ann_search(box_dist);// visit closer child first
ANNcoord box_diff = ANNkdQ[cut_dim] - cd_bnds[ANN_HI];
if (box_diff < 0) // within bounds - ignore
box_diff = 0;
// distance to further box
box_dist = (ANNdist) ANN_SUM(box_dist,
ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff)));
// visit further child if close enough
if (box_dist * ANNkdMaxErr < ANNkdPointMK->max_key())
child[ANN_LO]->ann_search(box_dist);
}
ANN_FLOP(10) // increment floating ops
ANN_SPL(1) // one more splitting node visited
}
//----------------------------------------------------------------------
// kd_leaf::ann_search - search points in a leaf node
// Note: The unreadability of this code is the result of
// some fine tuning to replace indexing by pointer operations.
//----------------------------------------------------------------------
void ANNkd_leaf::ann_search(ANNdist box_dist)
{
register ANNdist dist; // distance to data point
register ANNcoord* pp; // data coordinate pointer
register ANNcoord* qq; // query coordinate pointer
register ANNdist min_dist; // distance to k-th closest point
register ANNcoord t;
register int d;
min_dist = ANNkdPointMK->max_key(); // k-th smallest distance so far
for (int i = 0; i < n_pts; i++) { // check points in bucket
pp = ANNkdPts[bkt[i]]; // first coord of next data point
qq = ANNkdQ; // first coord of query point
dist = 0;
for(d = 0; d < ANNkdDim; d++) {
ANN_COORD(1) // one more coordinate hit
ANN_FLOP(4) // increment floating ops
t = *(qq++) - *(pp++); // compute length and adv coordinate
// exceeds dist to k-th smallest?
if( (dist = ANN_SUM(dist, ANN_POW(t))) > min_dist) {
break;
}
}
if (d >= ANNkdDim && // among the k best?
(ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem
// add it to the list
ANNkdPointMK->insert(dist, bkt[i]);
min_dist = ANNkdPointMK->max_key();
}
}
ANN_LEAF(1) // one more leaf node visited
ANN_PTS(n_pts) // increment points visited
ANNptsVisited += n_pts; // increment number of points visited
}