4

我目前正在使用 SDL 在 C++ 中构建一个基于网格的小型游戏。我制作了一个瓦片类,它代表地图上的每个瓦片。该瓦片类用于二维向量,一维表示 X 轴,另一维表示 Y 轴。

我遇到了算法问题,我什至不知道从哪里开始,假设我有这张地图:

0 0 1 1 0 E
0 0 0 1 0 1
0 C 0 1 0 1
0 1 0 1 0 1
0 1 1 1 1 1

C是我的角色,E是出口,1是地砖。

我想找出最好的方法来确定角色是否有办法到达出口。我知道我可以使用一个函数来手动检查 C 周围的每一块地砖,并且对于 C 周围的每一块地砖,我会再次检查周围的每一块地砖,直到找到通往 E 的一致路径,但这似乎不是最优的。

我可以有一个线索或某种方向来定位自己吗?

4

4 回答 4

7

有很多算法可以找到两点之间的路径。三种算法易于实现和理解。

  1. 深度优先搜索(DFS)
  2. 广度优先搜索(BFS)
  3. Dijkstra 算法

深度优先搜索

该算法获取当前节点,找到所有邻居,将它们放入堆栈,弹出一个并遍历到最后或找到路径。

广度优先搜索

该算法获取当前节点,找到所有邻居,将它们放入队列中,逐个出列并遍历直到结束或找到路径。

DFS 和 BFS 的区别在于,DFS 不能保证最优解。考虑这种情况。

S 1 1
1 1 1
1 1 E

假设 S 是 (0,0) 而 E 是 (2, 2)。这个迷宫有很多最优解。因为,DFS 会检查其邻居的路径直到最后,它可能需要S -> (1,0) -> (2,0) -> (2,1) -> (1,1) -> (1,2) -> E并且它将返回 6 作为路径的成本。然而,BFS 找到所有邻居,所有邻居的邻居并继续。如果邻居之一是 E,则返回成本。这将保证是最佳的。所以,BFS 可能会这样。S -> (1,0) -> (2,0) -> (2,1) -> E(它找到邻居的邻居,它不会与每个邻居一起走到最后)。

Dijkstra 算法

它类似于 BFS,但它可以有权重。在示例中,我们假设从一个节点移动到另一个节点的成本为 1 个单位。在 Dijkstra 的算法中,它允许我们使用任何正整数作为代价,并且对于每个链接它可以是不同的。

结论

如果您想要最佳结果,请选择 BFS 或 Dijkstra 算法。对于您的情况,BFS 应该可以工作。

于 2013-10-05T03:09:55.677 回答
5

看看最常用的寻路算法。

http://qiao.github.io/PathFinding.js/visual/

这是在 JS 中完成的,但您应该能够找到适合您需要的 C++ 实现,或者自己编写。

于 2013-10-05T02:49:43.340 回答
2
#include<bits/stdc++.h>
using namespace std;

#define ROW 9
#define COL 10

// Creating a shortcut for int, int pair type
typedef pair<int, int> Pair;

// Creating a shortcut for pair<int, pair<int, int>> type
typedef pair<double, pair<int, int> > pPair;

// A structure to hold the neccesary parameters
struct cell
{
    // Row and Column index of its parent
    // Note that 0 <= i <= ROW-1 & 0 <= j <= COL-1
    int parent_i, parent_j;
    // f = g + h
    double f, g, h;
};

// A Utility Function to check whether given cell (row, col)
// is a valid cell or not.
bool isValid(int row, int col)
{
    // Returns true if row number and column number
    // is in range
    return (row >= 0) && (row < ROW) &&
           (col >= 0) && (col < COL);
}

// A Utility Function to check whether the given cell is
// blocked or not
bool isUnBlocked(int grid[][COL], int row, int col)
{
    // Returns true if the cell is not blocked else false
    if (grid[row][col] == 1)
        return (true);
    else
        return (false);
}

// A Utility Function to check whether destination cell has
// been reached or not
bool isDestination(int row, int col, Pair dest)
{
    if (row == dest.first && col == dest.second)
        return (true);
    else
        return (false);
}

// A Utility Function to calculate the 'h' heuristics.
double calculateHValue(int row, int col, Pair dest)
{
    // Return using the distance formula
    return ((double)sqrt ((row-dest.first)*(row-dest.first)
                          + (col-dest.second)*(col-dest.second)));
}

// A Utility Function to trace the path from the source
// to destination
void tracePath(cell cellDetails[][COL], Pair dest)
{
    printf ("\nThe Path is ");
    int row = dest.first;
    int col = dest.second;

    stack<Pair> Path;

    while (!(cellDetails[row][col].parent_i == row
             && cellDetails[row][col].parent_j == col ))
    {
        Path.push (make_pair (row, col));
        int temp_row = cellDetails[row][col].parent_i;
        int temp_col = cellDetails[row][col].parent_j;
        row = temp_row;
        col = temp_col;
    }

    Path.push (make_pair (row, col));
    while (!Path.empty())
    {
        pair<int,int> p = Path.top();
        Path.pop();
        printf("-> (%d,%d) ",p.first,p.second);
    }

    return;
}

// A Function to find the shortest path between
// a given source cell to a destination cell according
// to A* Search Algorithm
void aStarSearch(int grid[][COL], Pair src, Pair dest)
{
    // If the source is out of range
    if (isValid (src.first, src.second) == false)
    {
        printf ("Source is invalid\n");
        return;
    }

    // If the destination is out of range
    if (isValid (dest.first, dest.second) == false)
    {
        printf ("Destination is invalid\n");
        return;
    }

    // Either the source or the destination is blocked
    if (isUnBlocked(grid, src.first, src.second) == false ||
            isUnBlocked(grid, dest.first, dest.second) == false)
    {
        printf ("Source or the destination is blocked\n");
        return;
    }

    // If the destination cell is the same as source cell
    if (isDestination(src.first, src.second, dest) == true)
    {
        printf ("We are already at the destination\n");
        return;
    }

    // Create a closed list and initialise it to false which means
    // that no cell has been included yet
    // This closed list is implemented as a boolean 2D array
    bool closedList[ROW][COL];
    memset(closedList, false, sizeof (closedList));

    // Declare a 2D array of structure to hold the details
    //of that cell
    cell cellDetails[ROW][COL];

    int i, j;

    for (i=0; i<ROW; i++)
    {
        for (j=0; j<COL; j++)
        {
            cellDetails[i][j].f = FLT_MAX;
            cellDetails[i][j].g = FLT_MAX;
            cellDetails[i][j].h = FLT_MAX;
            cellDetails[i][j].parent_i = -1;
            cellDetails[i][j].parent_j = -1;
        }
    }

    // Initialising the parameters of the starting node
    i = src.first, j = src.second;
    cellDetails[i][j].f = 0.0;
    cellDetails[i][j].g = 0.0;
    cellDetails[i][j].h = 0.0;
    cellDetails[i][j].parent_i = i;
    cellDetails[i][j].parent_j = j;

    /*
     Create an open list having information as-
     <f, <i, j>>
     where f = g + h,
     and i, j are the row and column index of that cell
     Note that 0 <= i <= ROW-1 & 0 <= j <= COL-1
     This open list is implenented as a set of pair of pair.*/
    set<pPair> openList;

    // Put the starting cell on the open list and set its
    // 'f' as 0
    openList.insert(make_pair (0.0, make_pair (i, j)));

    // We set this boolean value as false as initially
    // the destination is not reached.
    bool foundDest = false;

    while (!openList.empty())
    {
        pPair p = *openList.begin();

        // Remove this vertex from the open list
        openList.erase(openList.begin());

        // Add this vertex to the open list
        i = p.second.first;
        j = p.second.second;
        closedList[i][j] = true;

       /*
        Generating all the 8 successor of this cell

            N.W   N   N.E
              \   |   /
               \  |  /
            W----Cell----E
                 / | \
               /   |  \
            S.W    S   S.E

        Cell-->Popped Cell (i, j)
        N -->  North       (i-1, j)
        S -->  South       (i+1, j)
        E -->  East        (i, j+1)
        W -->  West           (i, j-1)
        N.E--> North-East  (i-1, j+1)
        N.W--> North-West  (i-1, j-1)
        S.E--> South-East  (i+1, j+1)
        S.W--> South-West  (i+1, j-1)*/

        // To store the 'g', 'h' and 'f' of the 8 successors
        double gNew, hNew, fNew;

        //----------- 1st Successor (North) ------------

        // Only process this cell if this is a valid one
        if (isValid(i-1, j) == true)
        {
            // If the destination cell is the same as the
            // current successor
            if (isDestination(i-1, j, dest) == true)
            {
                // Set the Parent of the destination cell
                cellDetails[i-1][j].parent_i = i;
                cellDetails[i-1][j].parent_j = j;
                printf ("The destination cell is found\n");
                tracePath (cellDetails, dest);
                foundDest = true;
                return;
            }
            // If the successor is already on the closed
            // list or if it is blocked, then ignore it.
            // Else do the following
            else if (closedList[i-1][j] == false &&
                     isUnBlocked(grid, i-1, j) == true)
            {
                gNew = cellDetails[i][j].g + 1.0;
                hNew = calculateHValue (i-1, j, dest);
                fNew = gNew + hNew;

                // If it isn’t on the open list, add it to
                // the open list. Make the current square
                // the parent of this square. Record the
                // f, g, and h costs of the square cell
                //                OR
                // If it is on the open list already, check
                // to see if this path to that square is better,
                // using 'f' cost as the measure.
                if (cellDetails[i-1][j].f == FLT_MAX ||
                        cellDetails[i-1][j].f > fNew)
                {
                    openList.insert( make_pair(fNew,
                                               make_pair(i-1, j)));

                    // Update the details of this cell
                    cellDetails[i-1][j].f = fNew;
                    cellDetails[i-1][j].g = gNew;
                    cellDetails[i-1][j].h = hNew;
                    cellDetails[i-1][j].parent_i = i;
                    cellDetails[i-1][j].parent_j = j;
                }
            }
        }

        //----------- 2nd Successor (South) ------------

        // Only process this cell if this is a valid one
        if (isValid(i+1, j) == true)
        {
            // If the destination cell is the same as the
            // current successor
            if (isDestination(i+1, j, dest) == true)
            {
                // Set the Parent of the destination cell
                cellDetails[i+1][j].parent_i = i;
                cellDetails[i+1][j].parent_j = j;
                printf("The destination cell is found\n");
                tracePath(cellDetails, dest);
                foundDest = true;
                return;
            }
            // If the successor is already on the closed
            // list or if it is blocked, then ignore it.
            // Else do the following
            else if (closedList[i+1][j] == false &&
                     isUnBlocked(grid, i+1, j) == true)
            {
                gNew = cellDetails[i][j].g + 1.0;
                hNew = calculateHValue(i+1, j, dest);
                fNew = gNew + hNew;

                // If it isn’t on the open list, add it to
                // the open list. Make the current square
                // the parent of this square. Record the
                // f, g, and h costs of the square cell
                //                OR
                // If it is on the open list already, check
                // to see if this path to that square is better,
                // using 'f' cost as the measure.
                if (cellDetails[i+1][j].f == FLT_MAX ||
                        cellDetails[i+1][j].f > fNew)
                {
                    openList.insert( make_pair (fNew, make_pair (i+1, j)));
                    // Update the details of this cell
                    cellDetails[i+1][j].f = fNew;
                    cellDetails[i+1][j].g = gNew;
                    cellDetails[i+1][j].h = hNew;
                    cellDetails[i+1][j].parent_i = i;
                    cellDetails[i+1][j].parent_j = j;
                }
            }
        }

        //----------- 3rd Successor (East) ------------

        // Only process this cell if this is a valid one
        if (isValid (i, j+1) == true)
        {
            // If the destination cell is the same as the
            // current successor
            if (isDestination(i, j+1, dest) == true)
            {
                // Set the Parent of the destination cell
                cellDetails[i][j+1].parent_i = i;
                cellDetails[i][j+1].parent_j = j;
                printf("The destination cell is found\n");
                tracePath(cellDetails, dest);
                foundDest = true;
                return;
            }

            // If the successor is already on the closed
            // list or if it is blocked, then ignore it.
            // Else do the following
            else if (closedList[i][j+1] == false &&
                     isUnBlocked (grid, i, j+1) == true)
            {
                gNew = cellDetails[i][j].g + 1.0;
                hNew = calculateHValue (i, j+1, dest);
                fNew = gNew + hNew;

                // If it isn’t on the open list, add it to
                // the open list. Make the current square
                // the parent of this square. Record the
                // f, g, and h costs of the square cell
                //                OR
                // If it is on the open list already, check
                // to see if this path to that square is better,
                // using 'f' cost as the measure.
                if (cellDetails[i][j+1].f == FLT_MAX ||
                        cellDetails[i][j+1].f > fNew)
                {
                    openList.insert( make_pair(fNew,
                                        make_pair (i, j+1)));

                    // Update the details of this cell
                    cellDetails[i][j+1].f = fNew;
                    cellDetails[i][j+1].g = gNew;
                    cellDetails[i][j+1].h = hNew;
                    cellDetails[i][j+1].parent_i = i;
                    cellDetails[i][j+1].parent_j = j;
                }
            }
        }

        //----------- 4th Successor (West) ------------

        // Only process this cell if this is a valid one
        if (isValid(i, j-1) == true)
        {
            // If the destination cell is the same as the
            // current successor
            if (isDestination(i, j-1, dest) == true)
            {
                // Set the Parent of the destination cell
                cellDetails[i][j-1].parent_i = i;
                cellDetails[i][j-1].parent_j = j;
                printf("The destination cell is found\n");
                tracePath(cellDetails, dest);
                foundDest = true;
                return;
            }

            // If the successor is already on the closed
            // list or if it is blocked, then ignore it.
            // Else do the following
            else if (closedList[i][j-1] == false &&
                     isUnBlocked(grid, i, j-1) == true)
            {
                gNew = cellDetails[i][j].g + 1.0;
                hNew = calculateHValue(i, j-1, dest);
                fNew = gNew + hNew;

                // If it isn’t on the open list, add it to
                // the open list. Make the current square
                // the parent of this square. Record the
                // f, g, and h costs of the square cell
                //                OR
                // If it is on the open list already, check
                // to see if this path to that square is better,
                // using 'f' cost as the measure.
                if (cellDetails[i][j-1].f == FLT_MAX ||
                        cellDetails[i][j-1].f > fNew)
                {
                    openList.insert( make_pair (fNew,
                                          make_pair (i, j-1)));

                    // Update the details of this cell
                    cellDetails[i][j-1].f = fNew;
                    cellDetails[i][j-1].g = gNew;
                    cellDetails[i][j-1].h = hNew;
                    cellDetails[i][j-1].parent_i = i;
                    cellDetails[i][j-1].parent_j = j;
                }
            }
        }

        //----------- 5th Successor (North-East) ------------

        // Only process this cell if this is a valid one
        if (isValid(i-1, j+1) == true)
        {
            // If the destination cell is the same as the
            // current successor
            if (isDestination(i-1, j+1, dest) == true)
            {
                // Set the Parent of the destination cell
                cellDetails[i-1][j+1].parent_i = i;
                cellDetails[i-1][j+1].parent_j = j;
                printf ("The destination cell is found\n");
                tracePath (cellDetails, dest);
                foundDest = true;
                return;
            }

            // If the successor is already on the closed
            // list or if it is blocked, then ignore it.
            // Else do the following
            else if (closedList[i-1][j+1] == false &&
                     isUnBlocked(grid, i-1, j+1) == true)
            {
                gNew = cellDetails[i][j].g + 1.414;
                hNew = calculateHValue(i-1, j+1, dest);
                fNew = gNew + hNew;

                // If it isn’t on the open list, add it to
                // the open list. Make the current square
                // the parent of this square. Record the
                // f, g, and h costs of the square cell
                //                OR
                // If it is on the open list already, check
                // to see if this path to that square is better,
                // using 'f' cost as the measure.
                if (cellDetails[i-1][j+1].f == FLT_MAX ||
                        cellDetails[i-1][j+1].f > fNew)
                {
                    openList.insert( make_pair (fNew, 
                                    make_pair(i-1, j+1)));

                    // Update the details of this cell
                    cellDetails[i-1][j+1].f = fNew;
                    cellDetails[i-1][j+1].g = gNew;
                    cellDetails[i-1][j+1].h = hNew;
                    cellDetails[i-1][j+1].parent_i = i;
                    cellDetails[i-1][j+1].parent_j = j;
                }
            }
        }

        //----------- 6th Successor (North-West) ------------

        // Only process this cell if this is a valid one
        if (isValid (i-1, j-1) == true)
        {
            // If the destination cell is the same as the
            // current successor
            if (isDestination (i-1, j-1, dest) == true)
            {
                // Set the Parent of the destination cell
                cellDetails[i-1][j-1].parent_i = i;
                cellDetails[i-1][j-1].parent_j = j;
                printf ("The destination cell is found\n");
                tracePath (cellDetails, dest);
                foundDest = true;
                return;
            }

            // If the successor is already on the closed
            // list or if it is blocked, then ignore it.
            // Else do the following
            else if (closedList[i-1][j-1] == false &&
                     isUnBlocked(grid, i-1, j-1) == true)
            {
                gNew = cellDetails[i][j].g + 1.414;
                hNew = calculateHValue(i-1, j-1, dest);
                fNew = gNew + hNew;

                // If it isn’t on the open list, add it to
                // the open list. Make the current square
                // the parent of this square. Record the
                // f, g, and h costs of the square cell
                //                OR
                // If it is on the open list already, check
                // to see if this path to that square is better,
                // using 'f' cost as the measure.
                if (cellDetails[i-1][j-1].f == FLT_MAX ||
                        cellDetails[i-1][j-1].f > fNew)
                {
                    openList.insert( make_pair (fNew, make_pair (i-1, j-1)));
                    // Update the details of this cell
                    cellDetails[i-1][j-1].f = fNew;
                    cellDetails[i-1][j-1].g = gNew;
                    cellDetails[i-1][j-1].h = hNew;
                    cellDetails[i-1][j-1].parent_i = i;
                    cellDetails[i-1][j-1].parent_j = j;
                }
            }
        }

        //----------- 7th Successor (South-East) ------------

        // Only process this cell if this is a valid one
        if (isValid(i+1, j+1) == true)
        {
            // If the destination cell is the same as the
            // current successor
            if (isDestination(i+1, j+1, dest) == true)
            {
                // Set the Parent of the destination cell
                cellDetails[i+1][j+1].parent_i = i;
                cellDetails[i+1][j+1].parent_j = j;
                printf ("The destination cell is found\n");
                tracePath (cellDetails, dest);
                foundDest = true;
                return;
            }

            // If the successor is already on the closed
            // list or if it is blocked, then ignore it.
            // Else do the following
            else if (closedList[i+1][j+1] == false &&
                     isUnBlocked(grid, i+1, j+1) == true)
            {
                gNew = cellDetails[i][j].g + 1.414;
                hNew = calculateHValue(i+1, j+1, dest);
                fNew = gNew + hNew;

                // If it isn’t on the open list, add it to
                // the open list. Make the current square
                // the parent of this square. Record the
                // f, g, and h costs of the square cell
                //                OR
                // If it is on the open list already, check
                // to see if this path to that square is better,
                // using 'f' cost as the measure.
                if (cellDetails[i+1][j+1].f == FLT_MAX ||
                        cellDetails[i+1][j+1].f > fNew)
                {
                    openList.insert(make_pair(fNew, 
                                        make_pair (i+1, j+1)));

                    // Update the details of this cell
                    cellDetails[i+1][j+1].f = fNew;
                    cellDetails[i+1][j+1].g = gNew;
                    cellDetails[i+1][j+1].h = hNew;
                    cellDetails[i+1][j+1].parent_i = i;
                    cellDetails[i+1][j+1].parent_j = j;
                }
            }
        }

        //----------- 8th Successor (South-West) ------------

        // Only process this cell if this is a valid one
        if (isValid (i+1, j-1) == true)
        {
            // If the destination cell is the same as the
            // current successor
            if (isDestination(i+1, j-1, dest) == true)
            {
                // Set the Parent of the destination cell
                cellDetails[i+1][j-1].parent_i = i;
                cellDetails[i+1][j-1].parent_j = j;
                printf("The destination cell is found\n");
                tracePath(cellDetails, dest);
                foundDest = true;
                return;
            }

            // If the successor is already on the closed
            // list or if it is blocked, then ignore it.
            // Else do the following
            else if (closedList[i+1][j-1] == false &&
                     isUnBlocked(grid, i+1, j-1) == true)
            {
                gNew = cellDetails[i][j].g + 1.414;
                hNew = calculateHValue(i+1, j-1, dest);
                fNew = gNew + hNew;

                // If it isn’t on the open list, add it to
                // the open list. Make the current square
                // the parent of this square. Record the
                // f, g, and h costs of the square cell
                //                OR
                // If it is on the open list already, check
                // to see if this path to that square is better,
                // using 'f' cost as the measure.
                if (cellDetails[i+1][j-1].f == FLT_MAX ||
                        cellDetails[i+1][j-1].f > fNew)
                {
                    openList.insert(make_pair(fNew, 
                                        make_pair(i+1, j-1)));

                    // Update the details of this cell
                    cellDetails[i+1][j-1].f = fNew;
                    cellDetails[i+1][j-1].g = gNew;
                    cellDetails[i+1][j-1].h = hNew;
                    cellDetails[i+1][j-1].parent_i = i;
                    cellDetails[i+1][j-1].parent_j = j;
                }
            }
        }
    }

    // When the destination cell is not found and the open
    // list is empty, then we conclude that we failed to
    // reach the destiantion cell. This may happen when the
    // there is no way to destination cell (due to blockages)
    if (foundDest == false)
        printf("Failed to find the Destination Cell\n");

    return;
}


// Driver program to test above function
int main()
{
    /* Description of the Grid-
     1--> The cell is not blocked
     0--> The cell is blocked    */
    int grid[ROW][COL] =
    {
        { 1, 0, 1, 1, 1, 1, 0, 1, 1, 1 },
        { 1, 1, 1, 0, 1, 1, 1, 0, 1, 1 },
        { 1, 1, 1, 0, 1, 1, 0, 1, 0, 1 },
        { 0, 0, 1, 0, 1, 0, 0, 0, 0, 1 },
        { 1, 1, 1, 0, 1, 1, 1, 0, 1, 0 },
        { 1, 0, 1, 1, 1, 1, 0, 1, 0, 0 },
        { 1, 0, 0, 0, 0, 1, 0, 0, 0, 1 },
        { 1, 0, 1, 1, 1, 1, 0, 1, 1, 1 },
        { 1, 1, 1, 0, 0, 0, 1, 0, 0, 1 }
    };

    // Source is the left-most bottom-most corner
    Pair src = make_pair(8, 0);

    // Destination is the left-most top-most corner
    Pair dest = make_pair(0, 0);

    aStarSearch(grid, src, dest);

    return(0);
}

您可以尝试为 9 行和 10 列制作的 A* 算法,根据您的要求对其进行更新

于 2017-02-26T13:20:01.213 回答
0

让我们假设地面为:

                       1  1  1  1  1  E 
                       1  1  1  1  1  1 
                       1  1  1  1  1  1
                       1  1  1  1  1  1
                       1  1  1  1  1  1
                       C  1  1  1  1  1

但是总是试着让程序知道形状的属性,例如正方形在所有边上都是相等的,这就是为什么完美的对角线方式是最短的,所以如果有墙,你可以让你的程序选择对角线的最近部分作为

                       1  1  1  1  1  E 
                       1  1  1  1  0  1 
                       1  1  1  0  1  1
                       1  1  0  1  1  1
                       1  0  1  1  1  1
                       C  1  1  1  1  1

C (1) 旁边的部分,然后再继续对角线将有所帮助。为任何语法或拼写错误道歉。

于 2016-04-22T14:08:54.063 回答