有谁知道如何优化我的 Javascript 存储桶填充的性能?我第一次尝试使用递归函数,但它遇到了堆栈溢出。当前代码在 Chrome 中运行良好,但 Firefox 将停止执行。:-(
var canvas = {
height: 300,
width: 300
};
var color;
var imgArray = [];
var imgdata;
$(document).ready(function() {
canvas.obj = document.createElement('canvas');
$('body').append(canvas.obj);
$(canvas.obj).attr('height', canvas.height);
$(canvas.obj).attr('width', canvas.width);
var context = canvas.obj.getContext('2d');
var imageObj = new Image();
imageObj.onload = function() {
context.drawImage(imageObj, 0, 0, canvas.height, canvas.width);
imgdata = context.getImageData(0, 0, canvas.width, canvas.height).data;
};
imageObj.src = '';
$('canvas').click(function(e) {
color = getRGBA(getPos(e.pageX, e.pageY));
addToImageArray(e.pageX, e.pageY, true);
checkImage();
$('#currentcolor').css('background-color', 'rgba('+color.r+','+color.g+','+color.b+','+color.a+')');
for (var y = 0; y < canvas.height; y++) {
for (var x = 0; x < canvas.width; x++) {
var posarray = searchArray(x, y);
if (posarray.inarray && posarray.inrange) {
var poscolor = getRGBA(getPos(x, y));
$('#imgholder').append('<div style="height: 1px; width: 1px; background-color: rgba('+poscolor.r+','+poscolor.g+','+poscolor.b+','+poscolor.a+'); display:inline-block; position:absolute; top: '+y+'px; left: '+x+'px"></div>');
}
}
}
});
});
function checkImage() {
var changed = true;
var i = 0;
console.log('start');
while (changed) {
changed = false;
for (var y = 0; y < canvas.height; y++) {
for (var x = 0; x < canvas.width; x++) {
var posarray = searchArray(x, y);
if (posarray.inarray && posarray.inrange) {
var pos = {
top: {
x: x,
y: y-1
},
bottom: {
x: x,
y: y+1
},
left: {
x: x-1,
y: y
},
right: {
x: x+1,
y: y
}
};
i++;
//top
var topposarray = searchArray(pos.top.x, pos.top.y);
if (pos.top.y >= 0 && !topposarray.inarray) {
if (inrange(color, getRGBA(getPos(pos.top.x, pos.top.y)))) {
addToImageArray(pos.top.x, pos.top.y, true);
changed = true;
}
else {
addToImageArray(pos.top.x, pos.top.y, false);
}
}
//bottom
var bottomposarray = searchArray(pos.bottom.x, pos.bottom.y);
if (pos.top.y <= canvas.height && !bottomposarray.inarray) {
if (inrange(color, getRGBA(getPos(pos.bottom.x, pos.bottom.y)))) {
addToImageArray(pos.bottom.x, pos.bottom.y, true);
changed = true;
}
else {
addToImageArray(pos.bottom.x, pos.bottom.y, false);
}
}
//left
var leftposarray = searchArray(pos.left.x, pos.left.y);
if (pos.top.x >= 0 && !leftposarray.inarray) {
if (inrange(color, getRGBA(getPos(pos.left.x, pos.left.y)))) {
addToImageArray(pos.left.x, pos.left.y, true);
changed = true;
}
else {
addToImageArray(pos.left.x, pos.left.y, false);
}
}
//right
var rightposarray = searchArray(pos.right.x, pos.right.y);
if (pos.top.x <= canvas.width && !rightposarray.inarray) {
if (inrange(color, getRGBA(getPos(pos.right.x, pos.right.y)))) {
addToImageArray(pos.right.x, pos.right.y, true);
changed = true;
}
else {
addToImageArray(pos.right.x, pos.right.y, false);
}
}
}
}
}
}
console.log('done');
$('#currentcolor').html('loops: '+ i);
}
function crange(color1, color2) {
return (color1 > color2-10 && color1 < color2+10);
}
function inrange(color1, color2) {
if (crange(color1.r,color2.r) && crange(color1.g,color2.g) && crange(color1.b,color2.b)) {
return true;
}
else {
return false;
}
}
function searchArray(x, y) {
if (imgArray[y] !== undefined && imgArray[y][x] !== undefined) {
return {
inarray: true,
inrange: imgArray[y][x]
};
}
else {
return {
inarray: false
};
}
}
function addToImageArray(x, y, inrange) {
if (imgArray[y] === undefined) {
imgArray[y] = [];
}
imgArray[y][x] = inrange;
}
function getRGBA(pos) {
var color = {
r: imgdata[pos],
g: imgdata[pos+1],
b: imgdata[pos+2],
a: imgdata[pos+3]
};
return color;
}
function getPos(x, y) {
var pos = (y * 4)* canvas.width;
pos += (x*4);
return pos;
}
测试代码http://jsfiddle.net/XzMxx/
提前致谢!