106

背景

this question中所述,我正在使用Scalaz 7迭代来处理恒定堆空间中的大型(即无界)数据流。

我的代码如下所示:

type ErrorOrT[M[+_], A] = EitherT[M, Throwable, A]
type ErrorOr[A] = ErrorOrT[IO, A]

def processChunk(c: Chunk, idx: Long): Result

def process(data: EnumeratorT[Chunk, ErrorOr]): IterateeT[Vector[(Chunk, Long)], ErrorOr, Vector[Result]] =
  Iteratee.fold[Vector[(Chunk, Long)], ErrorOr, Vector[Result]](Nil) { (rs, vs) =>
    rs ++ vs map { 
      case (c, i) => processChunk(c, i) 
    }
  } &= (data.zipWithIndex mapE Iteratee.group(P))

问题

我似乎遇到了内存泄漏,但我对 Scalaz/FP 不够熟悉,无法知道该错误是在 Scalaz 中还是在我的代码中。直观地说,我希望这段代码只需要(大约)P倍的Chunk-size 空间。

注意:我发现了一个类似的问题,其中OutOfMemoryError遇到了 an ,但我的代码没有使用consume.

测试

我进行了一些测试以尝试隔离问题。zipWithIndex总而言之,只有在使用和时才会出现泄漏group

// no zipping/grouping
scala> (i1 &= enumArrs(1 << 25, 128)).run.unsafePerformIO
res47: Long = 4294967296

// grouping only
scala> (i2 &= (enumArrs(1 << 25, 128) mapE Iteratee.group(4))).run.unsafePerformIO
res49: Long = 4294967296

// zipping and grouping
scala> (i3 &= (enumArrs(1 << 25, 128).zipWithIndex mapE Iteratee.group(4))).run.unsafePerformIO
java.lang.OutOfMemoryError: Java heap space

// zipping only
scala> (i4 &= (enumArrs(1 << 25, 128).zipWithIndex)).run.unsafePerformIO
res51: Long = 4294967296

// no zipping/grouping, larger arrays
scala> (i1 &= enumArrs(1 << 27, 128)).run.unsafePerformIO
res53: Long = 17179869184

// zipping only, larger arrays
scala> (i4 &= (enumArrs(1 << 27, 128).zipWithIndex)).run.unsafePerformIO
res54: Long = 17179869184

测试代码:

import scalaz.iteratee._, scalaz.effect.IO, scalaz.std.vector._

// define an enumerator that produces a stream of new, zero-filled arrays
def enumArrs(sz: Int, n: Int) = 
  Iteratee.enumIterator[Array[Int], IO](
    Iterator.continually(Array.fill(sz)(0)).take(n))

// define an iteratee that consumes a stream of arrays 
// and computes its length
val i1 = Iteratee.fold[Array[Int], IO, Long](0) { 
  (c, a) => c + a.length 
}

// define an iteratee that consumes a grouped stream of arrays 
// and computes its length
val i2 = Iteratee.fold[Vector[Array[Int]], IO, Long](0) { 
  (c, as) => c + as.map(_.length).sum 
}

// define an iteratee that consumes a grouped/zipped stream of arrays
// and computes its length
val i3 = Iteratee.fold[Vector[(Array[Int], Long)], IO, Long](0) {
  (c, vs) => c + vs.map(_._1.length).sum
}

// define an iteratee that consumes a zipped stream of arrays
// and computes its length
val i4 = Iteratee.fold[(Array[Int], Long), IO, Long](0) {
  (c, v) => c + v._1.length
}

问题

  • 我的代码中有错误吗?
  • 我怎样才能使它在恒定的堆空间中工作?
4

1 回答 1

4

对于那些坚持使用旧iterateeAPI 的人来说,这将是一个小小的安慰,但我最近验证了针对scalaz-stream API的等效测试通过。这是一个较新的流处理 API,旨在取代iteratee.

为了完整起见,这里是测试代码:

// create a stream containing `n` arrays with `sz` Ints in each one
def streamArrs(sz: Int, n: Int): Process[Task, Array[Int]] =
  (Process emit Array.fill(sz)(0)).repeat take n

(streamArrs(1 << 25, 1 << 14).zipWithIndex 
      pipe process1.chunk(4) 
      pipe process1.fold(0L) {
    (c, vs) => c + vs.map(_._1.length.toLong).sum
  }).runLast.run

这应该适用于n参数的任何值(前提是您愿意等待足够长的时间)——我测试了 2^14 个 32MiB 数组(即,随着时间的推移总共分配了半个 TiB 的内存)。

于 2013-10-10T19:13:17.157 回答