我正在尝试使用 à la System F 类型的 lambda 演算编码 Coq 逻辑连接词。这是我编写的一堆代码(我认为是标准的东西)
Definition True := forall X: Prop, X -> X.
Lemma I: True.
Proof.
unfold True. intros. apply H.
Qed.
Section s.
Variables A B: Prop.
(* conjunction *)
Definition and := forall X: Prop, (A -> B -> X) -> X.
Infix "/\" := and.
Lemma and_intro: A -> B -> A/\B.
Proof.
intros HA HB. split.
apply HA.
apply HB.
Qed.
Lemma and_elim_l: A/\B -> A.
Proof.
intros H. destruct H as [HA HB]. apply HA.
Qed.
Lemma and_elim_r: A/\B -> B.
Proof.
intros H. destruct H as [HA HB]. apply HB.
Qed.
(* disjunction *)
Definition or := forall X:Prop, (A -> X) -> (B -> X) -> X.
Infix "\/" := or.
Lemma or_intro_l: A -> A\/B.
intros HA. left. apply HA.
Qed.
Lemma or_elim: forall C:Prop, A \/ B -> (A -> C) -> (B -> C) -> C.
Proof.
intros C HOR HAC HBC. destruct HOR.
apply (HAC H).
apply (HBC H).
Qed.
(* falsity *)
Definition False := forall Y:Prop, Y.
Lemma false_elim: False -> A.
Proof.
unfold False. intros. apply (H A).
Qed.
End s.
基本上,我写下了合取、析取、真假的排除和引入法则。我不确定是否正确地做事,但我认为事情应该这样工作。现在我想定义存在量化,但我不知道如何进行。有人有建议吗?