简短的回答:使用objdump
orreadelf
代替。
长答案:让我们看一个实际的示例案例example.c
:
#include <stdio.h>
static const char global1[] = "static const char []";
static const char *global2 = "static const char *";
static const char *const global3 = "static const char *const";
const char global4[] = "const char []";
const char *global5 = "const char *";
const char *const global6 = "const char *const";
char global7[] = "char []";
char *global8 = "char *";
char *const global9 = "char *const";
int main(void)
{
static const char local1[] = "static const char []";
static const char *local2 = "static const char *";
static const char *const local3 = "static const char *const";
const char local4[] = "const char []";
const char *local5 = "const char *";
const char *const local6 = "const char *const";
char local7[] = "char []";
char *local8 = "char *";
char *const local9 = "char *const";
printf("Global:\n");
printf("\t%s\n", global1);
printf("\t%s\n", global2);
printf("\t%s\n", global3);
printf("\t%s\n", global4);
printf("\t%s\n", global5);
printf("\t%s\n", global6);
printf("\t%s\n", global7);
printf("\t%s\n", global8);
printf("\t%s\n", global9);
printf("\n");
printf("Local:\n");
printf("\t%s\n", local1);
printf("\t%s\n", local2);
printf("\t%s\n", local3);
printf("\t%s\n", local4);
printf("\t%s\n", local5);
printf("\t%s\n", local6);
printf("\t%s\n", local7);
printf("\t%s\n", local8);
printf("\t%s\n", local9);
return 0;
}
您可以使用例如将其编译为目标文件
gcc -W -Wall -c example.c
并使用可执行文件
gcc -W -Wall example.c -o example
您可以使用objdump -tr example.o
转储(非动态)目标文件的符号和重定位信息,或objdump -TtRr example
转储可执行文件(和动态目标文件)的相同信息。使用
objdump -t example.o
在 x86-64 我得到
example.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 example.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .rodata 0000000000000000 .rodata
0000000000000000 l O .rodata 0000000000000015 global1
0000000000000000 l O .data 0000000000000008 global2
0000000000000048 l O .rodata 0000000000000008 global3
00000000000000c0 l O .rodata 0000000000000015 local1.2053
0000000000000020 l O .data 0000000000000008 local2.2054
00000000000000d8 l O .rodata 0000000000000008 local3.2055
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000050 g O .rodata 000000000000000e global4
0000000000000008 g O .data 0000000000000008 global5
0000000000000080 g O .rodata 0000000000000008 global6
0000000000000010 g O .data 0000000000000008 global7
0000000000000018 g O .data 0000000000000008 global8
00000000000000a0 g O .rodata 0000000000000008 global9
0000000000000000 g F .text 000000000000027a main
0000000000000000 *UND* 0000000000000000 puts
0000000000000000 *UND* 0000000000000000 printf
0000000000000000 *UND* 0000000000000000 putchar
0000000000000000 *UND* 0000000000000000 __stack_chk_fail
输出在标题man 1 objdump
下的中进行了描述。-t
请注意,第二个“列”实际上是固定宽度的:七个字符宽,描述对象的类型。第三列是节名,*UND*
对于未定义的,.text
对于代码,.rodata
对于只读(不可变)数据,.data
对于初始化的可变数据,.bss
对于未初始化的可变数据,等等。
从上面的符号表中我们可以看出local4
,local5
, local6
, local7
, local8
, 和local9
variables 实际上根本没有在符号表中获得条目。这是因为它们是本地的main()
。它们所引用的字符串的内容存储在.data
或.rodata
(或动态构建)中,具体取决于编译器看到的最佳内容。
接下来我们看看搬迁记录。使用
objdump -r example.o
我明白了
example.o: file format elf64-x86-64
RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0000000000000037 R_X86_64_32S .rodata+0x000000000000005e
0000000000000040 R_X86_64_32S .rodata+0x000000000000006b
0000000000000059 R_X86_64_32S .rodata+0x0000000000000088
0000000000000062 R_X86_64_32S .rodata+0x000000000000008f
0000000000000067 R_X86_64_32 .rodata+0x00000000000000a8
000000000000006c R_X86_64_PC32 puts-0x0000000000000004
0000000000000071 R_X86_64_32 .rodata+0x00000000000000b0
0000000000000076 R_X86_64_32 .rodata
0000000000000083 R_X86_64_PC32 printf-0x0000000000000004
000000000000008a R_X86_64_PC32 .data-0x0000000000000004
000000000000008f R_X86_64_32 .rodata+0x00000000000000b0
000000000000009f R_X86_64_PC32 printf-0x0000000000000004
00000000000000a6 R_X86_64_PC32 .rodata+0x0000000000000044
00000000000000ab R_X86_64_32 .rodata+0x00000000000000b0
00000000000000bb R_X86_64_PC32 printf-0x0000000000000004
00000000000000c0 R_X86_64_32 .rodata+0x00000000000000b0
00000000000000c5 R_X86_64_32 global4
00000000000000d2 R_X86_64_PC32 printf-0x0000000000000004
00000000000000d9 R_X86_64_PC32 global5-0x0000000000000004
00000000000000de R_X86_64_32 .rodata+0x00000000000000b0
00000000000000ee R_X86_64_PC32 printf-0x0000000000000004
00000000000000f5 R_X86_64_PC32 global6-0x0000000000000004
00000000000000fa R_X86_64_32 .rodata+0x00000000000000b0
000000000000010a R_X86_64_PC32 printf-0x0000000000000004
000000000000010f R_X86_64_32 .rodata+0x00000000000000b0
0000000000000114 R_X86_64_32 global7
0000000000000121 R_X86_64_PC32 printf-0x0000000000000004
0000000000000128 R_X86_64_PC32 global8-0x0000000000000004
000000000000012d R_X86_64_32 .rodata+0x00000000000000b0
000000000000013d R_X86_64_PC32 printf-0x0000000000000004
0000000000000144 R_X86_64_PC32 global9-0x0000000000000004
0000000000000149 R_X86_64_32 .rodata+0x00000000000000b0
0000000000000159 R_X86_64_PC32 printf-0x0000000000000004
0000000000000163 R_X86_64_PC32 putchar-0x0000000000000004
0000000000000168 R_X86_64_32 .rodata+0x00000000000000b5
000000000000016d R_X86_64_PC32 puts-0x0000000000000004
0000000000000172 R_X86_64_32 .rodata+0x00000000000000b0
0000000000000177 R_X86_64_32 .rodata+0x00000000000000c0
0000000000000184 R_X86_64_PC32 printf-0x0000000000000004
000000000000018b R_X86_64_PC32 .data+0x000000000000001c
0000000000000190 R_X86_64_32 .rodata+0x00000000000000b0
00000000000001a0 R_X86_64_PC32 printf-0x0000000000000004
00000000000001a7 R_X86_64_PC32 .rodata+0x00000000000000d4
00000000000001ac R_X86_64_32 .rodata+0x00000000000000b0
00000000000001bc R_X86_64_PC32 printf-0x0000000000000004
00000000000001c1 R_X86_64_32 .rodata+0x00000000000000b0
00000000000001d6 R_X86_64_PC32 printf-0x0000000000000004
00000000000001db R_X86_64_32 .rodata+0x00000000000000b0
00000000000001ef R_X86_64_PC32 printf-0x0000000000000004
00000000000001f4 R_X86_64_32 .rodata+0x00000000000000b0
0000000000000209 R_X86_64_PC32 printf-0x0000000000000004
000000000000020e R_X86_64_32 .rodata+0x00000000000000b0
0000000000000223 R_X86_64_PC32 printf-0x0000000000000004
0000000000000228 R_X86_64_32 .rodata+0x00000000000000b0
000000000000023d R_X86_64_PC32 printf-0x0000000000000004
0000000000000242 R_X86_64_32 .rodata+0x00000000000000b0
0000000000000257 R_X86_64_PC32 printf-0x0000000000000004
0000000000000271 R_X86_64_PC32 __stack_chk_fail-0x0000000000000004
RELOCATION RECORDS FOR [.data]:
OFFSET TYPE VALUE
0000000000000000 R_X86_64_64 .rodata+0x0000000000000015
0000000000000008 R_X86_64_64 .rodata+0x000000000000005e
0000000000000018 R_X86_64_64 .rodata+0x0000000000000088
0000000000000020 R_X86_64_64 .rodata+0x0000000000000015
RELOCATION RECORDS FOR [.rodata]:
OFFSET TYPE VALUE
0000000000000048 R_X86_64_64 .rodata+0x0000000000000029
0000000000000080 R_X86_64_64 .rodata+0x000000000000006b
00000000000000a0 R_X86_64_64 .rodata+0x000000000000008f
00000000000000d8 R_X86_64_64 .rodata+0x0000000000000029
RELOCATION RECORDS FOR [.eh_frame]:
OFFSET TYPE VALUE
0000000000000020 R_X86_64_PC32 .text
重定位记录按重定位所在的部分进行分组。因为字符串内容在.data
or.rodata
部分中,我们可以限制自己查看以orVALUE
开头的重定位。(可变字符串,如,存储在 中,不可变字符串和字符串文字存储在 中。).data
.rodata
char global7[] = "char []";
.data
.rodata
如果我们要在启用调试符号的情况下编译代码,则更容易确定哪个变量用于引用哪个字符串,但我可能只查看每个重定位值(目标)的实际内容,以查看哪些引用不可变的字符串需要修复。
命令组合
objdump -r example.o | awk '($3 ~ /^\..*\+/) { t = $3; sub(/\+/, " ", t); n[t]++ } END { for (r in n) printf "%d %s\n", n[r], r }' | sort -g
将输出每个目标的重定位数,然后是目标部分,然后是该部分中的目标偏移量,并以重定位中出现次数最多的目标最后排序。也就是说,上面输出的最后几行是您需要关注的。对我来说,我得到
1 .rodata
1 .rodata 0x0000000000000044
1 .rodata 0x00000000000000a8
1 .rodata 0x00000000000000b5
1 .rodata 0x00000000000000c0
1 .rodata 0x00000000000000d4
2 .rodata 0x0000000000000015
2 .rodata 0x0000000000000029
2 .rodata 0x000000000000005e
2 .rodata 0x000000000000006b
2 .rodata 0x0000000000000088
2 .rodata 0x000000000000008f
18 .rodata 0x00000000000000b0
如果我添加优化(gcc -W -Wall -O3 -fomit-frame-pointer -c example.c
),结果是
1 .rodata 0x0000000000000020
1 .rodata 0x0000000000000040
1 .rodata.str1.1
1 .rodata.str1.1 0x0000000000000058
2 .rodata.str1.1 0x000000000000000d
2 .rodata.str1.1 0x0000000000000021
2 .rodata.str1.1 0x000000000000005f
2 .rodata.str1.1 0x000000000000006c
3 .rodata.str1.1 0x000000000000003a
3 .rodata.str1.1 0x000000000000004c
18 .rodata.str1.1 0x0000000000000008
这表明编译器选项确实有很大的影响,但是有一个目标无论如何使用了 18 次:节.rodata
偏移量0xb0
(如果在编译时启用了优化,则为偏移量).rodata.str1.1
。0x8
那是 `"\t%s\n" 字符串文字。
将原程序修改为
char *local8 = "char *";
char *const local9 = "char *const";
const char *const fmt = "\t%s\n";
printf("Global:\n");
printf(fmt, global1);
printf(fmt, global2);
依此类推,用不可变的字符串指针替换格式字符串,fmt
完全消除了这 18 次重定位。(当然,您也可以使用等效const char fmt[] = "\t%s\n";
的 。)
上述分析表明,至少在 GCC-4.6.3 中,大多数可避免的重定位是由(重复使用)字符串文字引起的。将它们替换为 const chars ( const char fmt[] = "\t%s\n";
) 数组或指向 const chars () 的 const 指针const char *const fmt = "\t%s\n";
——这两种情况都将内容放入.rodata
部分,只读,并且指针/数组引用本身也是不可变的——似乎是一种有效且安全的方法对我来说策略。
此外,将字符串文字转换为不可变的字符串指针或字符数组完全是一个源代码级任务。也就是说,如果您使用上述方法转换所有字符串文字,您可以消除每个字符串文字至少一个重定位。
实际上,在这里,我看不出对象级分析对您有多大帮助。当然,它会告诉您您的修改是否会减少所需的重定位次数。
上面的awk
节可以扩展为一个函数,该函数为具有正偏移量的动态引用输出字符串常量:
#!/bin/bash
if [ $# -ne 1 ] || [ "$1" = "-h" ] || [ "$1" = "--help" ]; then
exec >&2
echo ""
echo "Usage: %s [ -h | --help ]"
echo " %s object.o"
echo ""
exit 1
fi
export LANG=C LC_ALL=C
objdump -wr "$1" | awk '
BEGIN {
RS = "[\t\v\f ]*[\r\n][\t\n\v\f\r ]*"
FS = "[\t\v\f ]+"
}
$1 ~ /^[0-9A-Fa-f]+/ {
n[$3]++
}
END {
for (s in n)
printf "%d %s\n", n[s], s
}
' | sort -g | gawk -v filename="$1" '
BEGIN {
RS = "[\t\v\f ]*[\r\n][\t\n\v\f\r ]*"
FS = "[\t\v\f ]+"
cmd = "objdump --file-offsets -ws " filename
while ((cmd | getline) > 0)
if ($3 == "section") {
s = $4
sub(/:$/, "", s)
o = $NF
sub(/\)$/, "", o)
start[s] = strtonum(o)
}
close(cmd)
}
{
if ($2 ~ /\..*\+/) {
s = $2
o = $2
sub(/\+.*$/, "", s)
sub(/^[^\+]*\+/, "", o)
o = strtonum(o) + start[s]
cmd = "dd if=\"" filename "\" of=/dev/stdout bs=1 skip=" o " count=256"
OLDRS = RS
RS = "\0"
cmd | getline hex
close(cmd)
RS = OLDRS
gsub(/\\/, "\\\\", hex)
gsub(/\t/, "\\t", hex)
gsub(/\n/, "\\n", hex)
gsub(/\r/, "\\r", hex)
gsub(/\"/, "\\\"", hex)
if (hex ~ /[\x00-\x1F\x7F-\x9F\xFE\xFF]/ || length(hex) < 1)
printf "%s\n", $0
else
printf "%s = \"%s\"\n", $0, hex
} else
print $0
}
'
这个有点粗糙,只是拍打在一起,不知道便携性如何。在我的机器上,它似乎确实找到了我尝试过的几个测试用例的字符串文字;您可能应该重写它以满足您自己的需求。或者甚至使用具有 ELF 支持的实际编程语言来直接检查目标文件。
对于上面显示的示例程序(在我建议减少重定位次数的修改之前),在没有优化的情况下编译,上面的脚本会产生输出
1 .data+0x000000000000001c = ""
1 .data-0x0000000000000004
1 .rodata
1 .rodata+0x0000000000000044 = ""
1 .rodata+0x00000000000000a8 = "Global:"
1 .rodata+0x00000000000000b5 = "Local:"
1 .rodata+0x00000000000000c0 = "static const char []"
1 .rodata+0x00000000000000d4 = ""
1 .text
1 __stack_chk_fail-0x0000000000000004
1 format
1 global4
1 global5-0x0000000000000004
1 global6-0x0000000000000004
1 global7
1 global8-0x0000000000000004
1 global9-0x0000000000000004
1 putchar-0x0000000000000004
2 .rodata+0x0000000000000015 = "static const char *"
2 .rodata+0x0000000000000029 = "static const char *const"
2 .rodata+0x000000000000005e = "const char *"
2 .rodata+0x000000000000006b = "const char *const"
2 .rodata+0x0000000000000088 = "char *"
2 .rodata+0x000000000000008f = "char *const"
2 puts-0x0000000000000004
18 .rodata+0x00000000000000b0 = "\t%s\n"
18 printf-0x0000000000000004
最后,您可能会注意到使用函数指针printf()
而不是直接调用printf()
将减少示例代码中的另外 18 次重定位,但我认为这是一个错误。
对于代码,您需要重定位,因为间接函数调用(通过函数指针调用)比直接调用慢得多。简而言之,这些重定位使函数和子例程调用更快,因此您绝对希望保留它们。
为冗长的答案道歉;希望您觉得这个有帮助。问题?