好吧,我对 Mahout 和 java 很陌生。我正在尝试评估推荐者,下面的代码每次返回 0.0,无论我使用的距离度量或集群大小。显然,它根本没有拆分训练和测试数据,我不知道为什么。
对此代码的任何帮助表示赞赏!
public class Example {
public static void main(String[] args) throws Exception {
final DataModel model = new FileDataModel(new File("FILENAME")) ;
RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
@Override
public Recommender buildRecommender(DataModel dataModel) throws TasteException {
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
ClusterSimilarity clusterSimilarity = new NearestNeighborClusterSimilarity(similarity);
TreeClusteringRecommender tree = new TreeClusteringRecommender(model, clusterSimilarity, 50);
return tree;
}
} ;
double score = evaluator.evaluate(recommenderBuilder, null, model, .7, 1.0);
System.out.println(score);
}
}
谢谢!