I am interested in deriving dominance metrics (as in a dominance hierarchy) for nodes in a dominance directed graph, aka a tournament graph. I can use R and the package igraph to easily construct such graphs, e.g.
library(igraph)
create a data frame of edges
the.froms <- c(1,1,1,2,2,3)
the.tos <- c(2,3,4,3,4,4)
the.set <- data.frame(the.froms, the.tos)
set.graph <- graph.data.frame(the.set)
plot(set.graph)
This plotted graph shows that node 1 influences nodes 2, 3, and 4 (is dominant to them), that 2 is dominant to 3 and 4, and that 3 is dominant to 4.
However, I see no easy way to actually calculate a dominance hierarchy as in the page: https://www.math.ucdavis.edu/~daddel/linear_algebra_appl/Applications/GraphTheory/GraphTheory_9_17/node11.html . So, my first and main question is does anyone know how to derive a dominance hierarchy/node-based dominance metric for a graph like this using some hopefully already coded solution in R?
Moreover, in my real case, I actually have a sparse matrix that is missing some interactions, e.g.
incomplete.set <- the.set[-2, ]
incomplete.graph <- graph.data.frame(incomplete.set)
plot(incomplete.graph)
In this plotted graph, there is no connection between species 1 and 3, however making some assumptions about transitivity, the dominance hierarchy is the same as above.
This is a much more complicated problem, but if anyone has any input about how I might go about deriving node-based metrics of dominance for sparse matrices like this, please let me know. I am hoping for an already coded solution in R, but I'm certainly MORE than willing to code it myself.
Thanks in advance!