我想应用一个函数,将矩阵返回到大型 data.table 对象的每一行(原始文件大约 30 GB,我有 80 GB 内存),并取回一个 data.table 对象。我想有效地做到这一点。我目前的方法如下:
my.function <- function(x){
alnRanges<-cigarToIRanges(x[6]);
alnStarts<-start(alnRanges)+as.numeric(x[4])-1;
alnEnds<-end(alnRanges)+as.numeric(x[4])-1;
y<-x[-4];
ys<-matrix(rep(y,length(alnRanges)),nrow=length(alnRanges),ncol=length(y),byrow=TRUE);
ys<-cbind(ys,alnStarts,alnEnds);
return(ys); # ys is a matrix
}
my.dt<-fread(my.file.name);
my.list.of.matrices<-apply(my.dt,1,my.function);
new.df<-do.call(rbind.data.frame,my.list.of.matrices);
colnames(new.df)[1:14]<-colnames(my.dt)[-4];
new.dt<-as.data.table(new.df);
注意1:我指定 my.function 只是为了表明它返回一个矩阵,因此我的应用行是一个矩阵列表。
注意2:我不确定我正在执行的操作有多慢,但似乎我可以减少行数。例如,将数据框转换为大对象的数据表会很慢吗?
可重现的例子:
请注意,Arun 和 Roland 让我更加努力地思考这个问题,所以我仍在努力解决它......可能是我不需要这些线......
我想获取一个 sam 文件,然后创建一个新的坐标文件,其中每个读取都根据其 CIGAR 字段进行拆分。
My sam file:
qname rname pos cigar
2218 chr1 24613476 42M2S
2067 chr1 87221030 44M
2129 chr1 79702717 44M
2165 chr1 43113438 44M
2086 chr1 52155089 4M921N40M
code:
library("data.table");
library("GenomicRanges");
sam2bed <- function(x){
alnRanges<-cigarToIRanges(x[4]);
alnStarts<-start(alnRanges)+as.numeric(x[3])-1;
alnEnds<-end(alnRanges)+as.numeric(x[3])-1;
#y<-as.data.frame(x[,pos:=NULL]);
#ys<-y[rep(seq_len(nrow(y)),length(alnRanges)),];
y<-x[-3];
ys<-matrix(rep(y,length(alnRanges)),nrow=length(alnRanges),ncol=length(y),byrow=TRUE);
ys<-cbind(ys,alnStarts,alnEnds);
return(ys);
}
sam.chr.dt<-fread(sam.parent.chr.file);
setnames(sam.chr.dt,old=c("V1","V2","V3","V4"),new=c("qname","rname","pos","cigar"));
bed.chr.lom<-apply(sam.chr.dt,1,sam2bed);
> bed.chr.lom
[[1]]
alnStarts alnEnds
[1,] "2218" "chr1" "42M2S" "24613476" "24613517"
[[2]]
alnStarts alnEnds
[1,] "2067" "chr1" "44M" "87221030" "87221073"
[[3]]
alnStarts alnEnds
[1,] "2129" "chr1" "44M" "79702717" "79702760"
[[4]]
alnStarts alnEnds
[1,] "2165" "chr1" "44M" "43113438" "43113481"
[[5]]
alnStarts alnEnds
[1,] "2086" "chr1" "4M921N40M" "52155089" "52155092"
[2,] "2086" "chr1" "4M921N40M" "52156014" "52156053"
bed.chr.df<-do.call(rbind.data.frame,bed.chr.lom);
> bed.chr.df
V1 V2 V3 alnStarts alnEnds
1 2218 chr1 42M2S 24613476 24613517
2 2067 chr1 44M 87221030 87221073
3 2129 chr1 44M 79702717 79702760
4 2165 chr1 44M 43113438 43113481
5 2086 chr1 4M921N40M 52155089 52155092
6 2086 chr1 4M921N40M 52156014 52156053
bed.chr.dt<-as.data.table(bed.chr.df);
> bed.chr.dt
V1 V2 V3 alnStarts alnEnds
1: 2218 chr1 42M2S 24613476 24613517
2: 2067 chr1 44M 87221030 87221073
3: 2129 chr1 44M 79702717 79702760
4: 2165 chr1 44M 43113438 43113481
5: 2086 chr1 4M921N40M 52155089 52155092
6: 2086 chr1 4M921N40M 52156014 52156053