我正在尝试实现一种算法来验证 RGB 图像的 4 个邻域(上、下、左和右)像素,如果所有像素 RGB 值都相等,我将输出图像中的一个像素标记为 1,否则它将是0. 非向量化的实现是:
def set_border_interior(img):
img_rows = img.shape[0]
img_cols = img.shape[1]
res = np.zeros((img_rows,img_cols))
for row in xrange(1,img_rows-1):
for col in xrange(1,img_cols-1):
data_b = set()
data_g = set()
data_r = set()
up = row - 1
down = row + 1
left = col - 1
right = col + 1
data_b.add(img.item(row,col,0))
data_g.add(img.item(row,col,1))
data_r.add(img.item(row,col,2))
data_b.add(img.item(up,col,0))
data_g.add(img.item(up,col,1))
data_r.add(img.item(up,col,2))
data_b.add(img.item(down,col,0))
data_g.add(img.item(down,col,1))
data_r.add(img.item(down,col,2))
data_b.add(img.item(row,left,0))
data_g.add(img.item(row,left,1))
data_r.add(img.item(row,left,2))
data_b.add(img.item(row,right,0))
data_g.add(img.item(row,right,1))
data_r.add(img.item(row,right,2))
if (len(data_b) == 1) and (len(data_g) == 1) and (len(data_r) == 1):
res.itemset(row,col, False)
else:
res.itemset(row,col, True)
return res
这种非向量化的方式,但确实很慢(甚至使用 img.item 读取数据并使用 img.itemset 设置新值)。有没有更好的方法在 Numpy(或 scipy)中实现这一点?