很抱歉,这篇文章很长,但我在下面提供了复制和粘贴示例数据以及可能的解决方案。问题的相关部分在帖子的上部(水平规则上方)。
我有下表
Dt customer_id buy_time money_spent
-------------------------------------------------
2000-01-04 100 11:00:00.00 2
2000-01-05 100 16:00:00.00 1
2000-01-10 100 13:00:00.00 4
2000-01-10 100 14:00:00.00 3
2000-01-04 200 09:00:00.00 10
2000-01-06 200 10:00:00.00 11
2000-01-06 200 11:00:00.00 5
2000-01-10 200 08:00:00.00 20
并想要一个查询来获得这个结果集
Dt Dt_next customer_id buy_time money_spent
-------------------------------------------------------------
2000-01-04 2000-01-05 100 11:00:00.00 2
2000-01-05 2000-01-10 100 16:00:00.00 1
2000-01-10 NULL 100 13:00:00.00 4
2000-01-10 NULL 100 14:00:00.00 3
2000-01-04 2000-01-06 200 09:00:00.00 10
2000-01-06 2000-01-10 200 10:00:00.00 11
2000-01-06 2000-01-10 200 11:00:00.00 5
2000-01-10 NULL 200 08:00:00.00 20
即:我希望每个客户 ( customer_id
) 和每一天 ( Dt
) 第二天同一客户访问过 ( Dt_next
)。
我已经有一个查询给出了后者的结果集(数据和查询包含在水平规则下方)。但是,它涉及一个left outer join
和两个dense_rank
聚合函数。这种方法对我来说似乎有点笨拙,我认为应该有更好的解决方案。任何指向替代解决方案的指针都非常感谢!谢谢!
顺便说一句:我使用的是 SQL Server 11,该表有 >>1m 个条目。
我的查询:
select
customer_table.Dt
,customer_table_lead.Dt as Dt_next
,customer_table.customer_id
,customer_table.buy_time
,customer_table.money_spent
from
(
select
#customer_data.*
,dense_rank() over (partition by customer_id order by customer_id asc, Dt asc) as Dt_int
from #customer_data
) as customer_table
left outer join
(
select distinct
#customer_data.Dt
,#customer_data.customer_id
,dense_rank() over (partition by customer_id order by customer_id asc, Dt asc)-1 as Dt_int
from #customer_data
) as customer_table_lead
on
(
customer_table.Dt_int=customer_table_lead.Dt_int
and customer_table.customer_id=customer_table_lead.customer_id
)
样本数据:
create table #customer_data (
Dt date not null,
customer_id int not null,
buy_time time(2) not null,
money_spent float not null
);
insert into #customer_data values ('2000-01-04',100,'11:00:00',2);
insert into #customer_data values ('2000-01-05',100,'16:00:00',1);
insert into #customer_data values ('2000-01-10',100,'13:00:00',4);
insert into #customer_data values ('2000-01-10',100,'14:00:00',3);
insert into #customer_data values ('2000-01-04',200,'09:00:00',10);
insert into #customer_data values ('2000-01-06',200,'10:00:00',11);
insert into #customer_data values ('2000-01-06',200,'11:00:00',5);
insert into #customer_data values ('2000-01-10',200,'08:00:00',20);