80

我们每天都会遇到很多情况,我们必须在代码中进行繁琐且非常多的字符串操作。我们都知道字符串操作是昂贵的操作。我想知道可用版本中哪个最便宜。

最常见的操作是串联(这是我们可以在一定程度上控制的东西)。在 C++ 中连接 std::strings 的最佳方法是什么以及加速连接的各种解决方法?

我是说,

std::string l_czTempStr;

1).l_czTempStr = "Test data1" + "Test data2" + "Test data3";

2). l_czTempStr =  "Test data1"; 
    l_czTempStr += "Test data2";
    l_czTempStr += "Test data3";

3). using << operator

4). using append()

另外,使用 CString 比使用 std::string 有什么好处吗?

4

9 回答 9

76

这是一个小型测试套件:

#include <iostream>
#include <string>
#include <chrono>
#include <sstream>

int main ()
{
    typedef std::chrono::high_resolution_clock clock;
    typedef std::chrono::duration<float, std::milli> mil;
    std::string l_czTempStr;
    std::string s1="Test data1";
    auto t0 = clock::now();
    #if VER==1
    for (int i = 0; i < 100000; ++i)
    {
        l_czTempStr = s1 + "Test data2" + "Test data3";
    }
    #elif VER==2
    for (int i = 0; i < 100000; ++i)
    {
        l_czTempStr =  "Test data1"; 
        l_czTempStr += "Test data2";
        l_czTempStr += "Test data3";
    }
    #elif VER==3
    for (int i = 0; i < 100000; ++i)
    {
        l_czTempStr =  "Test data1"; 
        l_czTempStr.append("Test data2");
        l_czTempStr.append("Test data3");
    }
    #elif VER==4
    for (int i = 0; i < 100000; ++i)
    {
        std::ostringstream oss;
        oss << "Test data1";
        oss << "Test data2";
        oss << "Test data3";
        l_czTempStr = oss.str();
    }
    #endif
    auto t1 = clock::now();
    std::cout << l_czTempStr << '\n';
    std::cout << mil(t1-t0).count() << "ms\n";
}

关于大肠杆菌

编译如下:

clang++ -std=c++11 -O3 -DVER=1 -Wall -pedantic -pthread main.cpp

21.6463 毫秒

-DVER=2

6.61773ms

-DVER=3

6.7855ms

-DVER=4

102.015 毫秒

看起来2)+=是赢家。

(同时编译和不编译-pthread似乎会影响时间)

于 2013-09-19T10:34:28.827 回答
36

除了其他答案...

前段时间我对这个问题进行了广泛的基准测试,得出的结论是,在所有用例中最有效的解决方案(Linux x86 / x64 / ARM 上的 GCC 4.7 和 4.8)首先reserve()是结果字符串有足够的空间来容纳所有连接的字符串,然后只有append()它们(或使用operator +=(),这没有区别)。

不幸的是,我似乎删除了那个基准,所以你只有我的话(但如果我的话还不够,你可以很容易地调整 Mats Petersson 的基准来自己验证这一点)。

简而言之:

const string space = " ";
string result;
result.reserve(5 + space.size() + 5);
result += "hello";
result += space;
result += "world";

根据具体的用例(连接字符串的数量、类型和大小),有时这种方法是迄今为止最有效的,有时它与其他方法相当,但从来没有更糟。


问题是,提前计算所需的总大小真的很痛苦,尤其是在混合字符串文字时std::string(我相信上面的例子在这件事上已经足够清楚了)。一旦您修改其中一个文字或添加另一个要连接的字符串,此类代码的可维护性绝对是可怕的。

一种方法是用来sizeof计算文字的大小,但恕我直言,它造成的混乱比解决的问题多,可维护性仍然很糟糕:

#define STR_HELLO "hello"
#define STR_WORLD "world"

const string space = " ";
string result;
result.reserve(sizeof(STR_HELLO)-1 + space.size() + sizeof(STR_WORLD)-1);
result += STR_HELLO;
result += space;
result += STR_WORLD;

一个可用的解决方案(C++11,可变参数模板)

我最终选择了一组可变参数模板,这些模板可以根据需要有效地计算字符串大小(例如,字符串文字的大小在编译时确定),reserve()然后将所有内容连接起来。

在这里,希望这是有用的:

namespace detail {

  template<typename>
  struct string_size_impl;

  template<size_t N>
  struct string_size_impl<const char[N]> {
    static constexpr size_t size(const char (&) [N]) { return N - 1; }
  };

  template<size_t N>
  struct string_size_impl<char[N]> {
    static size_t size(char (&s) [N]) { return N ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<const char*> {
    static size_t size(const char* s) { return s ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<char*> {
    static size_t size(char* s) { return s ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<std::string> {
    static size_t size(const std::string& s) { return s.size(); }
  };

  template<typename String> size_t string_size(String&& s) {
    using noref_t = typename std::remove_reference<String>::type;
    using string_t = typename std::conditional<std::is_array<noref_t>::value,
                                              noref_t,
                                              typename std::remove_cv<noref_t>::type
                                              >::type;
    return string_size_impl<string_t>::size(s);
  }

  template<typename...>
  struct concatenate_impl;

  template<typename String>
  struct concatenate_impl<String> {
    static size_t size(String&& s) { return string_size(s); }
    static void concatenate(std::string& result, String&& s) { result += s; }
  };

  template<typename String, typename... Rest>
  struct concatenate_impl<String, Rest...> {
    static size_t size(String&& s, Rest&&... rest) {
      return string_size(s)
           + concatenate_impl<Rest...>::size(std::forward<Rest>(rest)...);
    }
    static void concatenate(std::string& result, String&& s, Rest&&... rest) {
      result += s;
      concatenate_impl<Rest...>::concatenate(result, std::forward<Rest>(rest)...);
    }
  };

} // namespace detail

template<typename... Strings>
std::string concatenate(Strings&&... strings) {
  std::string result;
  result.reserve(detail::concatenate_impl<Strings...>::size(std::forward<Strings>(strings)...));
  detail::concatenate_impl<Strings...>::concatenate(result, std::forward<Strings>(strings)...);
  return result;
}

就公共接口而言,唯一有趣的部分是最后一个template<typename... Strings> std::string concatenate(Strings&&... strings)模板。用法很简单:

int main() {
  const string space = " ";
  std::string result = concatenate("hello", space, "world");
  std::cout << result << std::endl;
}

启用优化后,任何体面的编译器都应该能够将concatenate调用扩展到与我手动编写所有内容的第一个示例相同的代码。就 GCC 4.7 和 4.8 而言,生成的代码和性能几乎相同。

于 2013-09-19T15:34:22.077 回答
25

最坏的可能情况是使用普通的旧strcat(或sprintf),因为strcat需要一个 C 字符串,并且必须“计数”才能找到结尾。对于长字符串,这是一个真正的性能受害者。C++ 风格的字符串要好得多,性能问题可能与内存分配有关,而不是计算长度。但是话又说回来,字符串以几何方式增长(每次需要增长时加倍),所以它并不那么糟糕。

我非常怀疑上述所有方法最终都具有相同或至少非常相似的性能。如果有的话,我希望这stringstream会更慢,因为支持格式的开销 - 但我也怀疑它是微不足道的。

由于这种事情很“有趣”,我会带着一个基准回来......

编辑:

请注意,这些结果适用于我的机器,运行 x86-64 Linux,使用 g++ 4.6.3 编译。其他操作系统、编译器和 C++ 运行时库实现可能会有所不同。如果性能对您的应用程序很重要,则使用您使用的编译器在对您至关重要的系统上进行基准测试。

这是我为测试而编写的代码。它可能不是真实场景的完美代表,但我认为这是一个具有代表性的场景:

#include <iostream>
#include <iomanip>
#include <string>
#include <sstream>
#include <cstring>

using namespace std;

static __inline__ unsigned long long rdtsc(void)
{
    unsigned hi, lo;
    __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
    return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );
}

string build_string_1(const string &a, const string &b, const string &c)
{
    string out = a + b + c;
    return out;
}

string build_string_1a(const string &a, const string &b, const string &c)
{
    string out;
    out.resize(a.length()*3);
    out = a + b + c;
    return out;
}

string build_string_2(const string &a, const string &b, const string &c)
{
    string out = a;
    out += b;
    out += c;
    return out;
}

string build_string_3(const string &a, const string &b, const string &c)
{
    string out;
    out = a;
    out.append(b);
    out.append(c);
    return out;
}


string build_string_4(const string &a, const string &b, const string &c)
{
    stringstream ss;

    ss << a << b << c;
    return ss.str();
}


char *build_string_5(const char *a, const char *b, const char *c)
{
    char* out = new char[strlen(a) * 3+1];
    strcpy(out, a);
    strcat(out, b);
    strcat(out, c);
    return out;
}



template<typename T>
size_t len(T s)
{
    return s.length();
}

template<>
size_t len(char *s)
{
    return strlen(s);
}

template<>
size_t len(const char *s)
{
    return strlen(s);
}



void result(const char *name, unsigned long long t, const string& out)
{
    cout << left << setw(22) << name << " time:" << right << setw(10) <<  t;
    cout << "   (per character: " 
         << fixed << right << setw(8) << setprecision(2) << (double)t / len(out) << ")" << endl;
}

template<typename T>
void benchmark(const char name[], T (Func)(const T& a, const T& b, const T& c), const char *strings[])
{
    unsigned long long t;

    const T s1 = strings[0];
    const T s2 = strings[1];
    const T s3 = strings[2];
    t = rdtsc();
    T out = Func(s1, s2, s3);
    t = rdtsc() - t; 

    if (len(out) != len(s1) + len(s2) + len(s3))
    {
        cout << "Error: out is different length from inputs" << endl;
        cout << "Got `" << out << "` from `" << s1 << "` + `" << s2 << "` + `" << s3 << "`";
    }
    result(name, t, out);
}


void benchmark(const char name[], char* (Func)(const char* a, const char* b, const char* c), 
               const char *strings[])
{
    unsigned long long t;

    const char* s1 = strings[0];
    const char* s2 = strings[1];
    const char* s3 = strings[2];
    t = rdtsc();
    char *out = Func(s1, s2, s3);
    t = rdtsc() - t; 

    if (len(out) != len(s1) + len(s2) + len(s3))
    {
        cout << "Error: out is different length from inputs" << endl;
        cout << "Got `" << out << "` from `" << s1 << "` + `" << s2 << "` + `" << s3 << "`";
    }
    result(name, t, out);
    delete [] out;
}


#define BM(func, size) benchmark(#func " " #size, func, strings ## _ ## size)


#define BM_LOT(size) BM(build_string_1, size); \
    BM(build_string_1a, size); \
    BM(build_string_2, size); \
    BM(build_string_3, size); \
    BM(build_string_4, size); \
    BM(build_string_5, size);

int main()
{
    const char *strings_small[]  = { "Abc", "Def", "Ghi" };
    const char *strings_medium[] = { "abcdefghijklmnopqrstuvwxyz", 
                                     "defghijklmnopqrstuvwxyzabc", 
                                     "ghijklmnopqrstuvwxyzabcdef" };
    const char *strings_large[]   = 
        { "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
          "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz", 

          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc"

          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc" 
          "defghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabc", 

          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
          "ghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdef"
        };

    for(int i = 0; i < 5; i++)
    {
        BM_LOT(small);
        BM_LOT(medium);
        BM_LOT(large);
        cout << "---------------------------------------------" << endl;
    }
}

以下是一些具有代表性的结果:

build_string_1 small   time:      4075   (per character:   452.78)
build_string_1a small  time:      5384   (per character:   598.22)
build_string_2 small   time:      2669   (per character:   296.56)
build_string_3 small   time:      2427   (per character:   269.67)
build_string_4 small   time:     19380   (per character:  2153.33)
build_string_5 small   time:      6299   (per character:   699.89)
build_string_1 medium  time:      3983   (per character:    51.06)
build_string_1a medium time:      6970   (per character:    89.36)
build_string_2 medium  time:      4072   (per character:    52.21)
build_string_3 medium  time:      4000   (per character:    51.28)
build_string_4 medium  time:     19614   (per character:   251.46)
build_string_5 medium  time:      6304   (per character:    80.82)
build_string_1 large   time:      8491   (per character:     3.63)
build_string_1a large  time:      9563   (per character:     4.09)
build_string_2 large   time:      6154   (per character:     2.63)
build_string_3 large   time:      5992   (per character:     2.56)
build_string_4 large   time:     32450   (per character:    13.87)
build_string_5 large   time:     15768   (per character:     6.74)

相同的代码,以 32 位运行:

build_string_1 small   time:      4289   (per character:   476.56)
build_string_1a small  time:      5967   (per character:   663.00)
build_string_2 small   time:      3329   (per character:   369.89)
build_string_3 small   time:      3047   (per character:   338.56)
build_string_4 small   time:     22018   (per character:  2446.44)
build_string_5 small   time:      3026   (per character:   336.22)
build_string_1 medium  time:      4089   (per character:    52.42)
build_string_1a medium time:      8075   (per character:   103.53)
build_string_2 medium  time:      4569   (per character:    58.58)
build_string_3 medium  time:      4326   (per character:    55.46)
build_string_4 medium  time:     22751   (per character:   291.68)
build_string_5 medium  time:      2252   (per character:    28.87)
build_string_1 large   time:      8695   (per character:     3.72)
build_string_1a large  time:     12818   (per character:     5.48)
build_string_2 large   time:      8202   (per character:     3.51)
build_string_3 large   time:      8351   (per character:     3.57)
build_string_4 large   time:     38250   (per character:    16.35)
build_string_5 large   time:      8143   (per character:     3.48)

由此,我们可以得出结论:

  1. 最好的选择是一次添加一点(out.append()out +=),“链式”方法相当接近。

  2. 预分配字符串没有帮助。

  3. 使用stringstream是一个非常糟糕的主意(慢 2-4 倍)。

  4. char *用途new char[]。_ 在调用函数中使用局部变量使其最快 - 但比较它有点不公平。

  5. 组合短字符串有相当多的开销 - 仅复制数据应该最多每个字节一个周期[除非数据不适合缓存]。

编辑2

根据评论添加:

string build_string_1b(const string &a, const string &b, const string &c)
{
    return a + b + c;
}

string build_string_2a(const string &a, const string &b, const string &c)
{
    string out;
    out.reserve(a.length() * 3);
    out += a;
    out += b;
    out += c;
    return out;
}

这给出了这些结果:

build_string_1 small   time:      3845   (per character:   427.22)
build_string_1b small  time:      3165   (per character:   351.67)
build_string_2 small   time:      3176   (per character:   352.89)
build_string_2a small  time:      1904   (per character:   211.56)

build_string_1 large   time:      9056   (per character:     3.87)
build_string_1b large  time:      6414   (per character:     2.74)
build_string_2 large   time:      6417   (per character:     2.74)
build_string_2a large  time:      4179   (per character:     1.79)

(32 位运行,但 64 位在这些上显示非常相似的结果)。

于 2013-09-19T10:44:59.333 回答
11

与大多数微优化一样,您需要衡量每个选项的效果,首先通过衡量确定这确实是一个值得优化的瓶颈。没有确定的答案。

append并且+=应该做同样的事情。

+从概念上讲效率较低,因为您正在创建和销毁临时对象。您的编译器可能会也可能无法将其优化为与追加一样快。

使用总大小调用reserve可能会减少所需的内存分配数量——它们可能是最大的瓶颈。

<<(大概在 a 上stringstream)可能会也可能不会更快;你需要测量它。如果您需要格式化非字符串类型,这很有用,但在处理字符串方面可能不会特别好或特别差。

CString它的缺点是不可移植,像我这样的 Unix 黑客无法告诉你它的优点可能是什么,也可能不是。

于 2013-09-19T10:45:26.480 回答
3

我决定使用用户Jesse Good提供的代码运行测试,稍作修改以考虑到Rapptz的观察,特别是 ostringstream 是在循环的每次单次迭代中构造的事实。因此我添加了一些案例,其中一些是使用序列“ oss.str(""); oss.clear() ”清除的ostringstream

这是代码

#include <iostream>
#include <string>
#include <chrono>
#include <sstream>
#include <functional>


template <typename F> void time_measurement(F f, const std::string& comment)
{
    typedef std::chrono::high_resolution_clock clock;
    typedef std::chrono::duration<float, std::milli> mil;
    std::string r;
    auto t0 = clock::now();
    f(r);
    auto t1 = clock::now();
    std::cout << "\n-------------------------" << comment << "-------------------\n" <<r << '\n';
    std::cout << mil(t1-t0).count() << "ms\n";
    std::cout << "---------------------------------------------------------------------------\n";

}

inline void clear(std::ostringstream& x)
{
    x.str("");
    x.clear();
}

void test()
{
    std:: cout << std::endl << "----------------String Comparison---------------- " << std::endl;
    const int n=100000;
    {
        auto f=[](std::string& l_czTempStr)
        {
            std::string s1="Test data1";
            for (int i = 0; i < n; ++i)
            {
                l_czTempStr = s1 + "Test data2" + "Test data3";
            }
        };
        time_measurement(f, "string, plain addition");
   }

   {
        auto f=[](std::string& l_czTempStr)
        {
            for (int i = 0; i < n; ++i)
            {
                l_czTempStr =  "Test data1";
                l_czTempStr += "Test data2";
                l_czTempStr += "Test data3";
            }
        };
        time_measurement(f, "string, incremental");
    }

    {
         auto f=[](std::string& l_czTempStr)
         {
            for (int i = 0; i < n; ++i)
            {
                l_czTempStr =  "Test data1";
                l_czTempStr.append("Test data2");
                l_czTempStr.append("Test data3");
            }
         };
         time_measurement(f, "string, append");
     }

    {
         auto f=[](std::string& l_czTempStr)
         {
            for (int i = 0; i < n; ++i)
            {
                std::ostringstream oss;
                oss << "Test data1";
                oss << "Test data2";
                oss << "Test data3";
                l_czTempStr = oss.str();
            }
         };
         time_measurement(f, "oss, creation in each loop, incremental");
     }

    {
         auto f=[](std::string& l_czTempStr)
         {
            std::ostringstream oss;
            for (int i = 0; i < n; ++i)
            {
                oss.str("");
                oss.clear();
                oss << "Test data1";
                oss << "Test data2";
                oss << "Test data3";
            }
            l_czTempStr = oss.str();
         };
         time_measurement(f, "oss, 1 creation, incremental");
     }

    {
         auto f=[](std::string& l_czTempStr)
         {
            std::ostringstream oss;
            for (int i = 0; i < n; ++i)
            {
                oss.str("");
                oss.clear();
                oss << "Test data1" << "Test data2" << "Test data3";
            }
            l_czTempStr = oss.str();
         };
         time_measurement(f, "oss, 1 creation, plain addition");
     }

    {
         auto f=[](std::string& l_czTempStr)
         {
            std::ostringstream oss;
            for (int i = 0; i < n; ++i)
            {
                clear(oss);
                oss << "Test data1" << "Test data2" << "Test data3";
            }
            l_czTempStr = oss.str();
         };
         time_measurement(f, "oss, 1 creation, clearing calling inline function, plain addition");
     }


    {
         auto f=[](std::string& l_czTempStr)
         {
            for (int i = 0; i < n; ++i)
            {
                std::string x;
                x =  "Test data1";
                x.append("Test data2");
                x.append("Test data3");
                l_czTempStr=x;
            }
         };
         time_measurement(f, "string, creation in each loop");
     }

}

结果如下:

/*

g++ "qtcreator debug mode"
----------------String Comparison---------------- 

-------------------------string, plain addition-------------------
Test data1Test data2Test data3
11.8496ms
---------------------------------------------------------------------------

-------------------------string, incremental-------------------
Test data1Test data2Test data3
3.55597ms
---------------------------------------------------------------------------

-------------------------string, append-------------------
Test data1Test data2Test data3
3.53099ms
---------------------------------------------------------------------------

-------------------------oss, creation in each loop, incremental-------------------
Test data1Test data2Test data3
58.1577ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, incremental-------------------
Test data1Test data2Test data3
11.1069ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, plain addition-------------------
Test data1Test data2Test data3
10.9946ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, clearing calling inline function, plain addition-------------------
Test data1Test data2Test data3
10.9502ms
---------------------------------------------------------------------------

-------------------------string, creation in each loop-------------------
Test data1Test data2Test data3
9.97495ms
---------------------------------------------------------------------------


g++ "qtcreator release mode" (optimized)
----------------String Comparison----------------

-------------------------string, plain addition-------------------
Test data1Test data2Test data3
8.41622ms
---------------------------------------------------------------------------

-------------------------string, incremental-------------------
Test data1Test data2Test data3
2.55462ms
---------------------------------------------------------------------------

-------------------------string, append-------------------
Test data1Test data2Test data3
2.5154ms
---------------------------------------------------------------------------

-------------------------oss, creation in each loop, incremental-------------------
Test data1Test data2Test data3
54.3232ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, incremental-------------------
Test data1Test data2Test data3
8.71854ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, plain addition-------------------
Test data1Test data2Test data3
8.80526ms
---------------------------------------------------------------------------

-------------------------oss, 1 creation, clearing calling inline function, plain addition-------------------
Test data1Test data2Test data3
8.78186ms
---------------------------------------------------------------------------

-------------------------string, creation in each loop-------------------
Test data1Test data2Test data3
8.4034ms
---------------------------------------------------------------------------
*/

现在使用 std::string 仍然更快,并且 append 仍然是最快的连接方式,但 ostringstream 不再像以前那样令人难以置信的可怕。

于 2018-03-14T00:02:01.720 回答
1

因此,由于这个问题的公认答案已经很老了,我决定用现代编译器更新它的基准,并比较@jesse-good 的两种解决方案和@syam 的模板版本

这是组合代码:

#include <iostream>
#include <string>
#include <chrono>
#include <sstream>
#include <vector>
#include <cstring>


#if VER==TEMPLATE
namespace detail {

  template<typename>
  struct string_size_impl;

  template<size_t N>
  struct string_size_impl<const char[N]> {
    static constexpr size_t size(const char (&) [N]) { return N - 1; }
  };

  template<size_t N>
  struct string_size_impl<char[N]> {
    static size_t size(char (&s) [N]) { return N ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<const char*> {
    static size_t size(const char* s) { return s ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<char*> {
    static size_t size(char* s) { return s ? strlen(s) : 0; }
  };

  template<>
  struct string_size_impl<std::string> {
    static size_t size(const std::string& s) { return s.size(); }
  };

  template<typename String> size_t string_size(String&& s) {
    using noref_t = typename std::remove_reference<String>::type;
    using string_t = typename std::conditional<std::is_array<noref_t>::value,
                                              noref_t,
                                              typename std::remove_cv<noref_t>::type
                                              >::type;
    return string_size_impl<string_t>::size(s);
  }

  template<typename...>
  struct concatenate_impl;

  template<typename String>
  struct concatenate_impl<String> {
    static size_t size(String&& s) { return string_size(s); }
    static void concatenate(std::string& result, String&& s) { result += s; }
  };

  template<typename String, typename... Rest>
  struct concatenate_impl<String, Rest...> {
    static size_t size(String&& s, Rest&&... rest) {
      return string_size(s)
           + concatenate_impl<Rest...>::size(std::forward<Rest>(rest)...);
    }
    static void concatenate(std::string& result, String&& s, Rest&&... rest) {
      result += s;
      concatenate_impl<Rest...>::concatenate(result, std::forward<Rest>(rest)...);
    }
  };

} // namespace detail

template<typename... Strings>
std::string concatenate(Strings&&... strings) {
  std::string result;
  result.reserve(detail::concatenate_impl<Strings...>::size(std::forward<Strings>(strings)...));
  detail::concatenate_impl<Strings...>::concatenate(result, std::forward<Strings>(strings)...);
  return result;
}

#endif

int main ()
{
typedef std::chrono::high_resolution_clock clock;
typedef std::chrono::duration<float, std::milli> ms;
std::string l_czTempStr;


std::string s1="Test data1";


auto t0 = clock::now();
#if VER==PLUS
for (int i = 0; i < 100000; ++i)
{
    l_czTempStr = s1 + "Test data2" + "Test data3";
}
#elif VER==PLUS_EQ
for (int i = 0; i < 100000; ++i)
{
    l_czTempStr =  "Test data1"; 
    l_czTempStr += "Test data2";
    l_czTempStr += "Test data3";
}
#elif VER==APPEND
for (int i = 0; i < 100000; ++i)
{
    l_czTempStr =  "Test data1"; 
    l_czTempStr.append("Test data2");
    l_czTempStr.append("Test data3");
}
#elif VER==STRSTREAM
for (int i = 0; i < 100000; ++i)
{
    std::ostringstream oss;
    oss << "Test data1";
    oss << "Test data2";
    oss << "Test data3";
    l_czTempStr = oss.str();
}
#elif VER=TEMPLATE
for (int i = 0; i < 100000; ++i)
{
    l_czTempStr = concatenate(s1, "Test data2", "Test data3");
}
#endif

#define STR_(x) #x
#define STR(x) STR_(x)

auto t1 = clock::now();
//std::cout << l_czTempStr << '\n';
std::cout << STR(VER) ": " << ms(t1-t0).count() << "ms\n";
}

测试说明:

for ARGTYPE in PLUS PLUS_EQ APPEND STRSTREAM TEMPLATE; do for i in `seq 4` ; do clang++ -std=c++11 -O3 -DVER=$ARGTYPE -Wall -pthread -pedantic main.cpp && ./a.out ; rm ./a.out ; done; done

和结果(通过电子表格处理以显示平均时间):

PLUS       23.5792   
PLUS       23.3812   
PLUS       35.1806   
PLUS       15.9394   24.5201
PLUS_EQ    15.737    
PLUS_EQ    15.3353   
PLUS_EQ    10.7764   
PLUS_EQ    25.245    16.773425
APPEND     22.954    
APPEND     16.9031   
APPEND     10.336    
APPEND     19.1348   17.331975
STRSTREAM  10.2063   
STRSTREAM  10.7765   
STRSTREAM  13.262    
STRSTREAM  22.3557   14.150125
TEMPLATE   16.6531   
TEMPLATE   16.629    
TEMPLATE   22.1885   
TEMPLATE   16.9288   18.09985

令人惊讶的是strstream,它似乎从 C++11 和后来的改进中受益匪浅。由于引入移动语义而删除必要的分配可能会产生一些影响。

您可以在coliru上自行测试

编辑:我已经更新了对 coliru 的测试以使用 g++-4.8:http ://coliru.stacked-crooked.com/a/593dcfe54e70e409 。图中的结果: g++-4.8 测试结果

(解释 - “stat.average”是指除两个极端值之外的所有值的平均值 - 一个最小值和一个最大值)

于 2019-10-11T11:10:23.807 回答
1

使用 C++17 这个简单的解决方案应该有非常好的性能,在大多数情况下可以与@syam 的模板重的解决方案相媲美。在某些情况下,它会更快,避免不必要strlen的调用。

#include <string>
#include <string_view>

template <typename... T>
std::string concat(T ...args) {
    std::string result;
    std::string_view views[] { args... };
    std::string::size_type full_size = 0;
    for (auto sub_view : views)
        full_size += sub_view.size();
    result.reserve(full_size);
    for (auto sub_view : views)
        result.append(sub_view);
    return result;
}

这里有一点冗余——我们真的不需要存储 string_views,只需要存储参数的长度。但是,开销可以忽略不计,它使代码清晰明了。

std::string_views 存储参数的长度。因此,将它们附加到 astd::string可能比附加到char*s 更快。此外,std::string_view用于std::char_traits长度计算,在某些实现中,可以在编译时计算编译时已知的参数。这种优化通常不能用于 C 调用,例如strlen.

于 2021-04-18T01:20:51.347 回答
0

有一些重要的参数,对决定“最优化的方式”有潜在的影响。其中一些是 - 字符串/内容大小、操作数、编译器优化等。

在大多数情况下,string::operator+=似乎效果最好。但是有时,在某些编译器上,也观察到ostringstream::operator<<效果最好 [例如 - MingW g++ 3.2.3、1.8 GHz 单处理器戴尔 PC ]。当编译器上下文出现时,主要是编译器的优化会产生影响。还要提一下,stringstreams与简单字符串相比,它们是复杂的对象,因此会增加开销。

更多信息讨论文章

于 2017-05-19T03:41:09.320 回答
0
#include <concepts>
#include <string>

template<class T>
concept string_like_t = requires(const T & str)
{
    {std::size(str)} -> std::same_as<size_t>;
    {*std::data(str)} -> std::convertible_to<std::remove_cvref_t<decltype(str[0])>>;
};
template<string_like_t T>
using char_t = std::remove_cvref_t<decltype(std::declval<T>()[0])>;

template<class Alloc, string_like_t First, string_like_t... Rest>
    requires (!string_like_t<Alloc>)
auto concat(const Alloc& alloc, const First& first, const Rest&... rest)
{
    std::basic_string<char_t<First>, std::char_traits<char_t<First>>, Alloc> result{ alloc };
    result.reserve(std::size(first) + (std::size(rest) + ...));
    result.append(std::data(first), std::size(first));
    (result.append(std::data(rest), std::size(rest)), ...);
    return result;
}

template<string_like_t First, string_like_t... Rest>
auto concat(const First& first, const Rest&... rest)
{
    typename std::basic_string<char_t<First>>::allocator_type alloc{};
    return concat(alloc, first, rest...);
}

#include <string_view>
#include <iostream>
#include <memory_resource>
int main()
{
    std::pmr::monotonic_buffer_resource mr { 1000 };
    std::pmr::polymorphic_allocator<char> alloc {&mr};
    std::string xxx = "xxxxxx";
    std::string_view yyy = "TEST";
    std::pmr::string zzz {", zzz", &mr};
    std::cout << concat(yyy, "123: ", "test", xxx, zzz) << std::endl;
    std::cout << concat(alloc, yyy, "123: ", "test", xxx, zzz) << std::endl;

    return 0;
}

似乎是最优化的 C++20 版本。支持多态分配器

于 2022-02-18T10:18:18.693 回答