35

我正在寻找一种pythonic方式来处理以下问题。

pandas.get_dummies()方法非常适合从数据框的分类列创建虚拟对象。例如,如果列在 中具有值['A', 'B'],则get_dummies()创建 2 个虚拟变量并相应地分配 0 或 1。

现在,我需要处理这种情况。单列,我们称之为“标签”,具有类似['A', 'B', 'C', 'D', 'A*C', 'C*D']. get_dummies()创建 6 个假人,但我只想要其中的 4 个,这样一行就可以有多个 1。

有没有办法以pythonic方式处理这个问题?我只能想一些逐步的算法来获得它,但这不包括 get_dummies()。谢谢

已编辑,希望更清楚!

4

4 回答 4

75

我知道自从提出这个问题以来已经有一段时间了,但是(至少现在有)文档支持的单线

In [4]: df
Out[4]:
      label
0  (a, c, e)
1     (a, d)
2       (b,)
3     (d, e)

In [5]: df['label'].str.join(sep='*').str.get_dummies(sep='*')
Out[5]:
   a  b  c  d  e
0  1  0  1  0  1
1  1  0  0  1  0
2  0  1  0  0  0
3  0  0  0  1  1
于 2014-08-08T17:25:47.957 回答
7

我有一个更清洁的解决方案。假设我们要转换以下数据框

   pageid category
0       0        a
1       0        b
2       1        a
3       1        c

进入

        a  b  c
pageid         
0       1  1  0
1       1  0  1

一种方法是使用 scikit-learn 的 DictVectorizer。但是,我有兴趣了解其他方法。

df = pd.DataFrame(dict(pageid=[0, 0, 1, 1], category=['a', 'b', 'a', 'c']))

grouped = df.groupby('pageid').category.apply(lambda lst: tuple((k, 1) for k in lst))
category_dicts = [dict(tuples) for tuples in grouped]
v = sklearn.feature_extraction.DictVectorizer(sparse=False)
X = v.fit_transform(category_dicts)

pd.DataFrame(X, columns=v.get_feature_names(), index=grouped.index)
于 2014-06-04T18:31:49.157 回答
4

您可以使用原始数据生成虚拟数据框,隔离包含给定原子的列,然后将结果匹配存储回原子列。

df
Out[28]: 
  label
0     A
1     B
2     C
3     D
4   A*C
5   C*D

dummies = pd.get_dummies(df['label'])

atom_col = [c for c in dummies.columns if '*' not in c]

for col in atom_col:
    ...:     df[col] = dummies[[c for c in dummies.columns if col in c]].sum(axis=1)
    ...:     

df
Out[32]: 
  label  A  B  C  D
0     A  1  0  0  0
1     B  0  1  0  0
2     C  0  0  1  0
3     D  0  0  0  1
4   A*C  1  0  1  0
5   C*D  0  0  1  1
于 2013-09-19T09:44:07.343 回答
3

我相信在遇到sklearn的MultiLabelBinarizer之后,这个问题需要一个更新的答案。

这个的用法很简单...

# Instantiate the binarizer
mlb = MultiLabelBinarizer()

# Using OP's original data frame
df = pd.DataFrame(data=['A', 'B', 'C', 'D', 'A*C', 'C*D'], columns=["label"])

print(df)
  label
0     A
1     B
2     C
3     D
4   A*C
5   C*D

# Convert to a list of labels
df = df.apply(lambda x: x["label"].split("*"), axis=1)

print(df)
0       [A]
1       [B]
2       [C]
3       [D]
4    [A, C]
5    [C, D]
dtype: object

# Transform to a binary array
array_out = mlb.fit_transform(df)

print(array_out)
[[1 0 0 0]
 [0 1 0 0]
 [0 0 1 0]
 [0 0 0 1]
 [1 0 1 0]
 [0 0 1 1]]

# Convert back to a dataframe (unnecessary step in many cases)
df_out = pd.DataFrame(data=array_out, columns=mlb.classes_)

print(df_out)
   A  B  C  D
0  1  0  0  0
1  0  1  0  0
2  0  0  1  0
3  0  0  0  1
4  1  0  1  0
5  0  0  1  1

这也非常快,几乎没有时间(0.03 秒)跨越 1000 行和 50K 类。

于 2018-10-26T15:25:22.703 回答