我有一个包含“A”和“B”列的多索引数据框。
有没有办法通过过滤多索引的一列来选择行而不将索引重置为单列索引?
例如。
# has multi-index (A,B)
df
#can I do this? I know this doesn't work because the index is multi-index so I need to specify a tuple
df.ix[df.A ==1]
我有一个包含“A”和“B”列的多索引数据框。
有没有办法通过过滤多索引的一列来选择行而不将索引重置为单列索引?
例如。
# has multi-index (A,B)
df
#can I do this? I know this doesn't work because the index is multi-index so I need to specify a tuple
df.ix[df.A ==1]
一种方法是使用get_level_values
Index 方法:
In [11]: df
Out[11]:
0
A B
1 4 1
2 5 2
3 6 3
In [12]: df.iloc[df.index.get_level_values('A') == 1]
Out[12]:
0
A B
1 4 1
在 0.13 中,您将能够使用xs
withdrop_level
参数:
df.xs(1, level='A', drop_level=False) # axis=1 if columns
注意:如果这是列 MultiIndex 而不是索引,您可以使用相同的技术:
In [21]: df1 = df.T
In [22]: df1.iloc[:, df1.columns.get_level_values('A') == 1]
Out[22]:
A 1
B 4
0 1
您也可以使用query
我认为非常易读且易于使用的内容:
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [10, 20, 50, 80], 'C': [6, 7, 8, 9]})
df = df.set_index(['A', 'B'])
C
A B
1 10 6
2 20 7
3 50 8
4 80 9
对于您的想法,您现在可以简单地执行以下操作:
df.query('A == 1')
C
A B
1 10 6
您还可以使用更复杂的查询and
df.query('A >= 1 and B >= 50')
C
A B
3 50 8
4 80 9
和or
df.query('A == 1 or B >= 50')
C
A B
1 10 6
3 50 8
4 80 9
您还可以查询不同的索引级别,例如
df.query('A == 1 or C >= 8')
将返回
C
A B
1 10 6
3 50 8
4 80 9
如果要在查询中使用变量,可以使用@
:
b_threshold = 20
c_threshold = 8
df.query('B >= @b_threshold and C <= @c_threshold')
C
A B
2 20 7
3 50 8
您可以使用DataFrame.xs()
:
In [36]: df = DataFrame(np.random.randn(10, 4))
In [37]: df.columns = [np.random.choice(['a', 'b'], size=4).tolist(), np.random.choice(['c', 'd'], size=4)]
In [38]: df.columns.names = ['A', 'B']
In [39]: df
Out[39]:
A b a
B d d d d
0 -1.406 0.548 -0.635 0.576
1 -0.212 -0.583 1.012 -1.377
2 0.951 -0.349 -0.477 -1.230
3 0.451 -0.168 0.949 0.545
4 -0.362 -0.855 1.676 -2.881
5 1.283 1.027 0.085 -1.282
6 0.583 -1.406 0.327 -0.146
7 -0.518 -0.480 0.139 0.851
8 -0.030 -0.630 -1.534 0.534
9 0.246 -1.558 -1.885 -1.543
In [40]: df.xs('a', level='A', axis=1)
Out[40]:
B d d
0 -0.635 0.576
1 1.012 -1.377
2 -0.477 -1.230
3 0.949 0.545
4 1.676 -2.881
5 0.085 -1.282
6 0.327 -0.146
7 0.139 0.851
8 -1.534 0.534
9 -1.885 -1.543
如果要保持A
级别(drop_level
关键字参数仅从 v0.13.0 开始可用):
In [42]: df.xs('a', level='A', axis=1, drop_level=False)
Out[42]:
A a
B d d
0 -0.635 0.576
1 1.012 -1.377
2 -0.477 -1.230
3 0.949 0.545
4 1.676 -2.881
5 0.085 -1.282
6 0.327 -0.146
7 0.139 0.851
8 -1.534 0.534
9 -1.885 -1.543
了解如何访问多索引 pandas DataFrame可以帮助您完成各种类似的任务。
将其复制粘贴到您的代码中以生成示例:
# hierarchical indices and columns
index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]],
names=['year', 'visit'])
columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']],
names=['subject', 'type'])
# mock some data
data = np.round(np.random.randn(4, 6), 1)
data[:, ::2] *= 10
data += 37
# create the DataFrame
health_data = pd.DataFrame(data, index=index, columns=columns)
health_data
会给你这样的表:
按列标准访问
health_data['Bob']
type HR Temp
year visit
2013 1 22.0 38.6
2 52.0 38.3
2014 1 30.0 38.9
2 31.0 37.3
health_data['Bob']['HR']
year visit
2013 1 22.0
2 52.0
2014 1 30.0
2 31.0
Name: HR, dtype: float64
# filtering by column/subcolumn - your case:
health_data['Bob']['HR']==22
year visit
2013 1 True
2 False
2014 1 False
2 False
health_data['Bob']['HR'][2013]
visit
1 22.0
2 52.0
Name: HR, dtype: float64
health_data['Bob']['HR'][2013][1]
22.0
按行访问
health_data.loc[2013]
subject Bob Guido Sue
type HR Temp HR Temp HR Temp
visit
1 22.0 38.6 40.0 38.9 53.0 37.5
2 52.0 38.3 42.0 34.6 30.0 37.7
health_data.loc[2013,1]
subject type
Bob HR 22.0
Temp 38.6
Guido HR 40.0
Temp 38.9
Sue HR 53.0
Temp 37.5
Name: (2013, 1), dtype: float64
health_data.loc[2013,1]['Bob']
type
HR 22.0
Temp 38.6
Name: (2013, 1), dtype: float64
health_data.loc[2013,1]['Bob']['HR']
22.0
切片多索引
idx=pd.IndexSlice
health_data.loc[idx[:,1], idx[:,'HR']]
subject Bob Guido Sue
type HR HR HR
year visit
2013 1 22.0 40.0 53.0
2014 1 30.0 52.0 45.0
您可以使用DataFrame.loc
:
>>> df.loc[1]
>>> print(df)
result
A B C
1 1 1 6
2 9
2 1 8
2 11
2 1 1 7
2 10
2 1 9
2 12
>>> print(df.loc[1])
result
B C
1 1 6
2 9
2 1 8
2 11
>>> print(df.loc[2, 1])
result
C
1 7
2 10
另一种选择是:
filter1 = df.index.get_level_values('A') == 1
filter2 = df.index.get_level_values('B') == 4
df.iloc[filter1 & filter2]
Out[11]:
0
A B
1 4 1
您可以使用MultiIndex
切片。例如:
arrays = [["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"]]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=["A", "B"])
df = pd.DataFrame(np.random.randint(9, size=(8, 2)), index=index, columns=["col1", "col2"])
col1 col2
A B
bar one 0 8
two 4 8
baz one 6 0
two 7 3
foo one 6 8
two 2 6
qux one 7 0
two 6 4
从A
和two
从 中选择所有B
:
df.loc[(slice(None), 'two'), :]
输出:
col1 col2
A B
bar two 4 8
baz two 7 3
foo two 2 6
qux two 6 4
选择bar
和baz
从中选择:A
_two
B
df.loc[(['bar', 'baz'], 'two'), :]
输出:
col1 col2
A B
bar two 4 8
baz two 7 3