我正在研究一个引理,该引理表明,n
如果每个单项式的指数小于或等于 ,则单项式之和的次数总是小于或等于n
。
lemma degree_poly_smaller:
fixes a :: "('a::comm_ring_1 poly)" and n::nat
shows "degree (∑x∷nat | x ≤ n . monom (coeff a x) x) ≤ n"
sorry
到目前为止,我要做的如下(请注意,我是 Isabelle 的初学者):
lemma degree_smaller:
fixes a :: "('a::comm_ring_1 poly)" and n::nat
shows "degree (∑x∷nat | x ≤ n . monom (coeff a x) x) ≤ n"
proof-
have th01: "⋀k. k ≤ n ⟹
degree (setsum (λ x . monom (coeff a x) k) {x∷nat. x ≤ n}) ≤ n"
by (metis degree_monom_le monom_setsum order_trans)
have min_lemma1: "k∈{x∷nat. x ≤ n} ⟹ k ≤ n" by simp
from this th01 have th02:
"⋀k. k∈{x∷nat. x ≤ n} ⟹
degree (setsum (λ x . monom (coeff a x) k) {x∷nat. x ≤ n}) ≤ n"
by (metis mem_Collect_eq)
have min_lemma2: "(SOME y . y ≤ n) ≤ n" by (metis (full_types) le0 some_eq_ex)
from this have th03:
"degree (∑x∷nat | x ≤ n . monom (coeff a x) (SOME y . y ≤ n)) ≤ n"
by (metis th01)
from min_lemma1 min_lemma2 have min_lemma3:
"(SOME y . y∈{x∷nat. x ≤ n}) ≤ n" by (metis (full_types) mem_Collect_eq some_eq_ex)
from this th01 th02 th03 have th04:
"degree (∑x∷nat | x ≤ n . monom (coeff a x) (SOME y . y∈{x∷nat. x ≤ n}) ) ≤ n"
by presburger
这就是问题所在,我不明白为什么以下引理不足以完成证明。特别是,我希望最后一部分(抱歉的地方)足够简单,让大锤找到证据:
from this th01 th02 th03 th04 have th05:
"degree
(setsum (λ i . monom (coeff a i) (SOME y . y∈{x∷nat. x ≤ n})) {x∷nat. x ≤ n})
≤ n"
by linarith
(* how can I prove this last step ? *)
from this have
"degree (setsum (λ i . monom (coeff a i) i) {x∷nat. x ≤ n}) ≤ n" sorry
from this show ?thesis by auto
qed
.
布赖恩霍夫曼出色回答的解决方案:
。
lemma degree_setsum_smaller:
"finite A ⟹ ∀x∈A. degree (f x) ≤ n ⟹ degree (∑x∈A. f x) ≤ n"
apply(induct rule: finite_induct)
apply(auto)
by (metis degree_add_le)
lemma finiteSetSmallerThanNumber:
"finite {x∷nat. x ≤ n}"
by (metis finite_Collect_le_nat)
lemma degree_smaller:
fixes a :: "('a::comm_ring_1 poly)" and n::nat
shows "degree (∑x∷nat | x ≤ n . monom (coeff a x) x) ≤ n"
apply (rule degree_setsum_smaller)
apply(simp add: finiteSetSmallerThanNumber)
by (metis degree_0 degree_monom_eq le0 mem_Collect_eq monom_eq_0_iff) (* from sledgehammer *)