pyephem(libastro 作为后端)和 gpredict(预测)作为后端似乎使用不同的方法来计算卫星速度。我附上了实际参考观察的详细比较输出。可以看出两者都输出了正确的位置,而只有gpredict输出了合理的range_rate值。误差似乎发生在卫星速度矢量中。我会说 gpredict 的原因更合理(类似的代码在 libastro 中带有问号..)因此我将在 libastro 中提出一个修复程序来处理它,就像在 gpredict 中一样,但是也许了解它背后的数学的人可以添加到此。
我添加了另一个工具 PyPredict(也是基于预测的)来在这里进行一些计算。然而,这些值是关闭的,所以必须是别的东西。
Pyephem: 3.7.5.3
Gpredict: 1.3
PyPredict 1.1 (Git: 10/02/2015)
OS: Ubuntu x64
Python 2.7.6
Time:
Epoch timestamp: 1420086600
Timestamp in milliseconds: 1420086600000
Human time (GMT): Thu, 01 Jan 2015 04:30:00 GMT
ISS (ZARYA)
1 25544U 98067A 15096.52834639 .00016216 00000-0 24016-3 0 9993
2 25544 51.6469 82.0200 0006014 185.1879 274.8446 15.55408008936880
observation point: N0 E0 alt=0
Test 1:
Gpredict: (Time, Az, El, Slant Range, Range Velocity)
2015 01 01 04:30:00 202.31 -21.46 5638 -5.646
2015 01 01 04:40:00 157.31 -2.35 2618 -3.107
2015 01 01 04:50:00 72.68 -10.26 3731 5.262
Pyephem 3.7.5.3 (default atmospheric refraction)
(2015/1/1 04:30:00, 202:18:45.3, -21:27:43.0, 5638.0685, -5.3014228515625)
(2015/1/1 04:40:00, 157:19:08.3, -1:21:28.6, 2617.9915, -2.934402099609375)
(2015/1/1 04:50:00, 72:40:59.9, -10:15:15.1, 3730.78375, 4.92381201171875)
No atmospheric refraction
(2015/1/1 04:30:00, 202:18:45.3, -21:27:43.0, 5638.0685, -5.3014228515625)
(2015/1/1 04:40:00, 157:19:08.3, -1:21:28.6, 2617.9915, -2.934402099609375)
(2015/1/1 04:50:00, 72:40:59.9, -10:15:15.1, 3730.78375, 4.92381201171875)
Pypredict
1420086600.0
{'decayed': 0, 'elevation': -19.608647085869123, 'name': 'ISS (ZARYA)', 'norad_id': 25544, 'altitude': 426.45804846615556, 'orbit': 92208, 'longitude': 335.2203454719759, 'sunlit': 1, 'geostationary': 0, 'footprint': 4540.173580837984, 'epoch': 1420086600.0, 'doppler': 1635.3621339278857, 'visibility': 'D', 'azimuth': 194.02436209048014, 'latitude': -45.784314563471646, 'orbital_model': 'SGP4', 'orbital_phase': 73.46488929141783, 'eclipse_depth': -8.890253049060693, 'slant_range': 5311.3721164183535, 'has_aos': 1, 'orbital_velocity': 27556.552465256085}
1420087200.0
{'decayed': 0, 'elevation': -6.757496200551716, 'name': 'ISS (ZARYA)', 'norad_id': 25544, 'altitude': 419.11153234752874, 'orbit': 92208, 'longitude': 9.137628905963876, 'sunlit': 1, 'geostationary': 0, 'footprint': 4502.939901708917, 'epoch': 1420087200.0, 'doppler': 270.6901377419433, 'visibility': 'D', 'azimuth': 139.21315598291235, 'latitude': -20.925997669236732, 'orbital_model': 'SGP4', 'orbital_phase': 101.06301876416072, 'eclipse_depth': -18.410968838249545, 'slant_range': 3209.8444916123644, 'has_aos': 1, 'orbital_velocity': 27568.150821416708}
1420087800.0
{'decayed': 0, 'elevation': -16.546383900323555, 'name': 'ISS (ZARYA)', 'norad_id': 25544, 'altitude': 414.1342802649042, 'orbit': 92208, 'longitude': 31.52356804788407, 'sunlit': 1, 'geostationary': 0, 'footprint': 4477.499436144489, 'epoch': 1420087800.0000002, 'doppler': -1597.032808834609, 'visibility': 'D', 'azimuth': 76.1840387294104, 'latitude': 9.316828913183791, 'orbital_model': 'SGP4', 'orbital_phase': 128.66115193399546, 'eclipse_depth': -28.67721196244149, 'slant_range': 4773.838774518728, 'has_aos': 1, 'orbital_velocity': 27583.591664378775}
Test 2 (short time):
Gpredict: (Slant Range, Range Velocity)
2015 01 01 04:30:00 5638 -5.646
2015 01 01 04:30:10 5581 -5.648
->5.7 km/s avg
(2015/1/1 04:30:00, 5638.0685, -5.3014228515625)
(2015/1/1 04:30:10, 5581.596, -5.30395361328125)
->5.7 km/s avg
皮芬
import ephem
import time
#TLE Kepler elements
line1 = "ISS (ZARYA)"
line2 = "1 25544U 98067A 15096.52834639 .00016216 00000-0 24016-3 0 9993"
line3 = "2 25544 51.6469 82.0200 0006014 185.1879 274.8446 15.55408008936880"
satellite = ephem.readtle(line1, line2, line3) # create ephem object from tle information
obs = ephem.Observer() # recreate Oberserver with current time
obs.lon, obs.lat, obs.elevation = '0' , '0' , 0
print('Pyephem Default (atmospheric refraction)')
obs.date = '2015/1/1 04:30:00'
satellite.compute(obs)
print(obs.date, satellite.az, satellite.alt,satellite.range/1000, satellite.range_velocity/1000)
obs.date = '2015/1/1 04:40:00'
satellite.compute(obs)
print(obs.date, satellite.az, satellite.alt,satellite.range/1000, satellite.range_velocity/1000)
obs.date = '2015/1/1 04:50:00'
satellite.compute(obs)
print(obs.date, satellite.az, satellite.alt,satellite.range/1000, satellite.range_velocity/1000)
obs.pressure = 0 # disable atmospheric refraction
print('Pyephem No atmospheric refraction')
obs.date = '2015/1/1 04:30:00'
satellite.compute(obs)
print(obs.date, satellite.az, satellite.alt,satellite.range/1000, satellite.range_velocity/1000)
obs.date = '2015/1/1 04:40:00'
satellite.compute(obs)
print(obs.date, satellite.az, satellite.alt,satellite.range/1000, satellite.range_velocity/1000)
obs.date = '2015/1/1 04:50:00'
satellite.compute(obs)
print(obs.date, satellite.az, satellite.alt,satellite.range/1000, satellite.range_velocity/1000)
print('10 s timing')
obs.date = '2015/1/1 04:30:00'
satellite.compute(obs)
print(obs.date, satellite.range/1000, satellite.range_velocity/1000)
obs.date = '2015/1/1 04:30:10'
satellite.compute(obs)
print(obs.date, satellite.range/1000, satellite.range_velocity/1000)
预测
import predict
import datetime
import time
format = '%Y/%m/%d %H:%M:%S'
tle = """ISS (ZARYA)
1 25544U 98067A 15096.52834639 .00016216 00000-0 24016-3 0 9993
2 25544 51.6469 82.0200 0006014 185.1879 274.8446 15.55408008936880"""
qth = (0, 10, 0) # lat (N), long (W), alt (meters)
#expect time as epoch time float
time= (datetime.datetime.strptime('2015/1/1 04:30:00', format) -datetime.datetime(1970,1,1)).total_seconds()
result = predict.observe(tle, qth, time)
print time
print result
time= (datetime.datetime.strptime('2015/1/1 04:40:00', format) -datetime.datetime(1970,1,1)).total_seconds()
result = predict.observe(tle, qth, time)
print time
print result
time= (datetime.datetime.strptime('2015/1/1 04:50:00', format) -datetime.datetime(1970,1,1)).total_seconds()
result = predict.observe(tle, qth, time)
print time
print result
Gpredict 和 PyEphem 的调试输出
预测
Name = ISS (ZARYA)
current jd = 2457023.68750
current mjd = 42003.7
satellite jd = 2457119.02835
satellite mjd = 42099
SiteLat = 0
SiteLong = 6.28319
SiteAltitude = 0
se_EPOCH : 115096.52834638999775052071
se_XNO : 0.06786747737871574870
se_XINCL : 0.90140843391418457031
se_XNODEO : 1.43151903152465820312
se_EO : 0.00060139998095110059
se_OMEGAO : 3.23213863372802734375
se_XMO : 4.79694318771362304688
se_BSTAR : 0.00024016000679694116
se_XNDT20 : 0.00000000049135865048
se_orbit : 93688
dt : -137290.81880159676074981689
CrntTime = 42004.2
SatX = -3807.5
SatY = 2844.85
SatZ = -4854.26
Radius = 6793.68
SatVX = -5.72752
SatVY = -3.69533
SatVZ = 2.32194
SiteX = -6239.11
SiteY = 1324.55
SiteZ = 0
SiteVX = -0.0965879
SiteVY = -0.454963
Height = 426.426
SSPLat = -0.795946
SSPLong = 0.432494
Azimuth = 3.53102
Elevation = -0.374582
Range = 5638.07
RangeRate = -5.30142
(2015/1/1 04:30:00, 5638.0685, -5.3014228515625)
Gpredict
time: 2457023,687500
pos obs: -6239,093574, 1324,506494, 0,000000
pos sat: -3807,793748, 2844,641722, -4854,112635
vel obs: -0,096585, -0,454962, 0,000000
vel sat: -6,088242, -3,928388, 2,468585
Gpredict (sgp_math.h)
/ -------------------------------------------------- ----------------- /
/* Converts the satellite's position and velocity */
/* vectors from normalised values to km and km/sec */
void
Convert_Sat_State( vector_t *pos, vector_t *vel )
{
Scale_Vector( xkmper, pos );
Scale_Vector( xkmper*xmnpda/secday, vel );
} /* Procedure Convert_Sat_State */
以弗所(Libastro)
*SatX = ERAD*posvec.x/1000; /* earth radii to km */
*SatY = ERAD*posvec.y/1000;
*SatZ = ERAD*posvec.z/1000;
*SatVX = 100*velvec.x; /* ?? */
*SatVY = 100*velvec.y;
*SatVZ = 100*velvec.z;