13

我有一个相关矩阵:

a <- matrix(c(1, .8, .8, .8, 1, .8, .8, .8, 1), 3)

##      [,1] [,2] [,3]
## [1,]  1.0  0.8  0.8
## [2,]  0.8  1.0  0.8
## [3,]  0.8  0.8  1.0

我现在想从相关矩阵创建一个协方差矩阵。如何在 R 中做到这一点?

我试过:

e1.sd <- 3
e2.sd <- 10
e3.sd <- 3
e.cov <- a * as.matrix(c, e1.sd, e2.sd, e3.sd) %*% t(as.matrix(c(e1.sd, e2.sd, e3.sd)))

但我得到了错误:

Error in a * as.matrix(c, e1.sd, e2.sd, e3.sd) %*% t(as.matrix(c(e1.sd,  : 
  non-conformable arrays

我究竟做错了什么?

4

4 回答 4

20

如果您知道各个变量的标准差,您可以:

stdevs <- c(e1.sd, e2.sd, e3.sd)
#stdevs is the vector that contains the standard deviations of your variables
b <- stdevs %*% t(stdevs)  
# b is an n*n matrix whose generic term is stdev[i]*stdev[j] (n is your number of variables)
a_covariance <- b * a  #your covariance matrix

另一方面,如果你不知道标准差,那是不可能的。

于 2013-09-11T12:22:19.900 回答
6
require(MBESS)
a <- matrix(c(1,.8,.8,.8,1,.8,.8,.8,1),3)
> cor2cov(a,c(3,10,3))
    [,1] [,2] [,3]
[1,]  9.0   24  7.2
[2,] 24.0  100 24.0
[3,]  7.2   24  9.0
于 2013-09-11T12:33:11.973 回答
2

基于 S4M 的答案,在基础 R 中,我将编写此函数:

cor2cov <- function(V, sd) {
  V * tcrossprod(sd)
}

tcrossprod将计算 sd 向量的每个元素组合的乘积(相当于x %*% t(x)),然后我们(标量)乘以方差-协方差矩阵

下面是使用内置 mtcars 数据集快速检查函数是否正确:

all.equal(
  cor2cov(cor(mtcars), sapply(mtcars, sd)), 
  cov(mtcars)
)
于 2018-01-02T19:15:14.480 回答
0

标记为正确的答案是错误的。

正确的解决方案似乎是 MBESS 包提供的解决方案,因此请参阅 dayne 的帖子。

> a
     [,1] [,2] [,3]
[1,]  1.0  0.8  0.8
[2,]  0.8  1.0  0.8
[3,]  0.8  0.8  1.0
> b <- c(3,10,3)
> b %*% t(b)
     [,1] [,2] [,3]
[1,]    9   30    9
[2,]   30  100   30
[3,]    9   30    9
> c <- b %*% t(b)
> c %*% a
      [,1]  [,2]  [,3]
[1,]  40.2  44.4  40.2
[2,] 134.0 148.0 134.0
[3,]  40.2  44.4  40.2
> cor2cov(cor.mat=a, b )
     [,1] [,2] [,3]
[1,]  9.0   24  7.2
[2,] 24.0  100 24.0
[3,]  7.2   24  9.0
> a %*% c
     [,1] [,2] [,3]
[1,] 40.2  134 40.2
[2,] 44.4  148 44.4
[3,] 40.2  134 40.2
> 
于 2020-02-11T17:06:09.643 回答