0

Lm 使用带有 MatLab 接口的 LIBSVM 将 34x5 数据分类为 3 个类别。我应用了 10 倍 Kfold 交叉验证方法和 RBF 内核。输出是这个混淆矩阵,正确率 0.88(准确率 88%)。我想提高准确性并获得可能的纯对角混淆矩阵。这是代码

load Turn180SVM1; //load data file
libsvm_options = '-s 1 -t 2 -d 3 -r 0 -c 1 -n 0.1 -p 0.1 -m 100 -e 0.000001 -h 1 -b 0 -wi 1 -q';//svm options

C=size(Turn180SVM1,2);

% cross validation
for i = 1:10
    indices = crossvalind('Kfold',Turn180SVM1(:,C),10);
    cp = classperf(Turn180SVM1(:,C)); 
    for j = 1:10
        [X, Z] = find(indices(:,end)==j);%testing
        [Y, Z] = find(indices(:,end)~=j);%training


feature_training = Turn180SVM1([Y'],[1:C-1]); feature_testing = Turn180SVM1([X'],[1:C-1]);
class_training = Turn180SVM1([Y'],end); class_testing = Turn180SVM1([X'], end);
% SVM Training
       disp('training');
       [feature_training,ps] = mapminmax(feature_training',0,1);
       feature_training = feature_training';
       feature_testing = mapminmax('apply',feature_testing',ps)';
       model = svmtrain(class_training,feature_training,libsvm_options);  
% 

% SVM Prediction       
        disp('testing');
        TestPredict = svmpredict(class_testing,sparse(feature_testing),model);
       TestErrap = sum(TestPredict~=class_testing)./length(class_testing)*100;
         cp = classperf(cp, TestPredict, X);
        disp(((i-1)*10 )+j);
end;
end;
[ConMat,order] = confusionmat(TestPredict,class_testing);
cp.CorrectRate;
cp.CountingMatrix;

首先,我想绘制偏差-方差权衡的学习曲线。任何帮助或使用哪个命令来绘制学习曲线?以及如何绘制 ROC 呢?这两种情况的任何帮助或代码示例?

谢谢

4

0 回答 0