我想在 Python 中执行多项式微积分。里面的polynomial
包裹numpy
对我来说不够快。因此,我决定在 Fortran 中重写几个函数,并使用f2py
它来创建可以轻松导入 Python 的共享库。目前,我正在将我的单变量和双变量多项式评估例程与他们的numpy
同行进行基准测试。
在单变量例程中,我使用霍纳的方法numpy.polynomial.polynomial.polyval
。numpy
我观察到,随着多项式阶数的增加,Fortran 例程比对应例程快的因素也在增加。
在双变量例程中,我两次使用霍纳的方法。首先在 y 中,然后在 x 中。不幸的是,我观察到,对于增加多项式阶数,numpy
对应物会赶上并最终超过我的 Fortran 例程。由于numpy.polynomial.polynomial.polyval2d
使用类似于我的方法,我认为第二个观察结果很奇怪。
我希望这个结果源于我对 Fortran 和f2py
. 可能有人知道为什么单变量例程总是显得优越,而双变量例程只对低阶多项式更优越?
编辑 这是我最新更新的代码、基准脚本和性能图:
多项式.f95
subroutine polyval(p, x, pval, nx)
implicit none
real(8), dimension(nx), intent(in) :: p
real(8), intent(in) :: x
real(8), intent(out) :: pval
integer, intent(in) :: nx
integer :: i
pval = 0.0d0
do i = nx, 1, -1
pval = pval*x + p(i)
end do
end subroutine polyval
subroutine polyval2(p, x, y, pval, nx, ny)
implicit none
real(8), dimension(nx, ny), intent(in) :: p
real(8), intent(in) :: x, y
real(8), intent(out) :: pval
integer, intent(in) :: nx, ny
real(8) :: tmp
integer :: i, j
pval = 0.0d0
do j = ny, 1, -1
tmp = 0.0d0
do i = nx, 1, -1
tmp = tmp*x + p(i, j)
end do
pval = pval*y + tmp
end do
end subroutine polyval2
subroutine polyval3(p, x, y, z, pval, nx, ny, nz)
implicit none
real(8), dimension(nx, ny, nz), intent(in) :: p
real(8), intent(in) :: x, y, z
real(8), intent(out) :: pval
integer, intent(in) :: nx, ny, nz
real(8) :: tmp, tmp2
integer :: i, j, k
pval = 0.0d0
do k = nz, 1, -1
tmp2 = 0.0d0
do j = ny, 1, -1
tmp = 0.0d0
do i = nx, 1, -1
tmp = tmp*x + p(i, j, k)
end do
tmp2 = tmp2*y + tmp
end do
pval = pval*z + tmp2
end do
end subroutine polyval3
benchmark.py(使用此脚本生成绘图)
import time
import os
import numpy as np
import matplotlib.pyplot as plt
# Compile and import Fortran module
os.system('f2py -c polynomial.f95 --opt="-O3 -ffast-math" \
--f90exec="gfortran-4.8" -m polynomial')
import polynomial
# Create random x and y value
x = np.random.rand()
y = np.random.rand()
z = np.random.rand()
# Number of repetition
repetition = 10
# Number of times to loop over a function
run = 100
# Number of data points
points = 26
# Max number of coefficients for univariate case
n_uni_min = 4
n_uni_max = 100
# Max number of coefficients for bivariate case
n_bi_min = 4
n_bi_max = 100
# Max number of coefficients for trivariate case
n_tri_min = 4
n_tri_max = 100
# Case on/off switch
case_on = [1, 1, 1]
case_1_done = 0
case_2_done = 0
case_3_done = 0
#=================#
# UNIVARIATE CASE #
#=================#
if case_on[0]:
# Array containing the polynomial order + 1 for several univariate polynomials
n_uni = np.array([int(x) for x in np.linspace(n_uni_min, n_uni_max, points)])
# Initialise arrays for storing timing results
time_uni_numpy = np.zeros(n_uni.size)
time_uni_fortran = np.zeros(n_uni.size)
for i in xrange(len(n_uni)):
# Create random univariate polynomial of order n - 1
p = np.random.rand(n_uni[i])
# Time evaluation of polynomial using NumPy
dt = []
for j in xrange(repetition):
t1 = time.time()
for r in xrange(run): np.polynomial.polynomial.polyval(x, p)
t2 = time.time()
dt.append(t2 - t1)
time_uni_numpy[i] = np.average(dt[2::])
# Time evaluation of polynomial using Fortran
dt = []
for j in xrange(repetition):
t1 = time.time()
for r in xrange(run): polynomial.polyval(p, x)
t2 = time.time()
dt.append(t2 - t1)
time_uni_fortran[i] = np.average(dt[2::])
# Speed-up factor
factor_uni = time_uni_numpy / time_uni_fortran
results_uni = np.zeros([len(n_uni), 4])
results_uni[:, 0] = n_uni
results_uni[:, 1] = factor_uni
results_uni[:, 2] = time_uni_numpy
results_uni[:, 3] = time_uni_fortran
print results_uni, '\n'
plt.figure()
plt.plot(n_uni, factor_uni)
plt.title('Univariate comparison')
plt.xlabel('# coefficients')
plt.ylabel('Speed-up factor')
plt.xlim(n_uni[0], n_uni[-1])
plt.ylim(0, max(factor_uni))
plt.grid(aa=True)
case_1_done = 1
#================#
# BIVARIATE CASE #
#================#
if case_on[1]:
# Array containing the polynomial order + 1 for several bivariate polynomials
n_bi = np.array([int(x) for x in np.linspace(n_bi_min, n_bi_max, points)])
# Initialise arrays for storing timing results
time_bi_numpy = np.zeros(n_bi.size)
time_bi_fortran = np.zeros(n_bi.size)
for i in xrange(len(n_bi)):
# Create random bivariate polynomial of order n - 1 in x and in y
p = np.random.rand(n_bi[i], n_bi[i])
# Time evaluation of polynomial using NumPy
dt = []
for j in xrange(repetition):
t1 = time.time()
for r in xrange(run): np.polynomial.polynomial.polyval2d(x, y, p)
t2 = time.time()
dt.append(t2 - t1)
time_bi_numpy[i] = np.average(dt[2::])
# Time evaluation of polynomial using Fortran
p = np.asfortranarray(p)
dt = []
for j in xrange(repetition):
t1 = time.time()
for r in xrange(run): polynomial.polyval2(p, x, y)
t2 = time.time()
dt.append(t2 - t1)
time_bi_fortran[i] = np.average(dt[2::])
# Speed-up factor
factor_bi = time_bi_numpy / time_bi_fortran
results_bi = np.zeros([len(n_bi), 4])
results_bi[:, 0] = n_bi
results_bi[:, 1] = factor_bi
results_bi[:, 2] = time_bi_numpy
results_bi[:, 3] = time_bi_fortran
print results_bi, '\n'
plt.figure()
plt.plot(n_bi, factor_bi)
plt.title('Bivariate comparison')
plt.xlabel('# coefficients')
plt.ylabel('Speed-up factor')
plt.xlim(n_bi[0], n_bi[-1])
plt.ylim(0, max(factor_bi))
plt.grid(aa=True)
case_2_done = 1
#=================#
# TRIVARIATE CASE #
#=================#
if case_on[2]:
# Array containing the polynomial order + 1 for several bivariate polynomials
n_tri = np.array([int(x) for x in np.linspace(n_tri_min, n_tri_max, points)])
# Initialise arrays for storing timing results
time_tri_numpy = np.zeros(n_tri.size)
time_tri_fortran = np.zeros(n_tri.size)
for i in xrange(len(n_tri)):
# Create random bivariate polynomial of order n - 1 in x and in y
p = np.random.rand(n_tri[i], n_tri[i])
# Time evaluation of polynomial using NumPy
dt = []
for j in xrange(repetition):
t1 = time.time()
for r in xrange(run): np.polynomial.polynomial.polyval3d(x, y, z, p)
t2 = time.time()
dt.append(t2 - t1)
time_tri_numpy[i] = np.average(dt[2::])
# Time evaluation of polynomial using Fortran
p = np.asfortranarray(p)
dt = []
for j in xrange(repetition):
t1 = time.time()
for r in xrange(run): polynomial.polyval3(p, x, y, z)
t2 = time.time()
dt.append(t2 - t1)
time_tri_fortran[i] = np.average(dt[2::])
# Speed-up factor
factor_tri = time_tri_numpy / time_tri_fortran
results_tri = np.zeros([len(n_tri), 4])
results_tri[:, 0] = n_tri
results_tri[:, 1] = factor_tri
results_tri[:, 2] = time_tri_numpy
results_tri[:, 3] = time_tri_fortran
print results_tri
plt.figure()
plt.plot(n_bi, factor_bi)
plt.title('Trivariate comparison')
plt.xlabel('# coefficients')
plt.ylabel('Speed-up factor')
plt.xlim(n_tri[0], n_tri[-1])
plt.ylim(0, max(factor_tri))
plt.grid(aa=True)
print '\n'
case_3_done = 1
#==============================================================================
plt.show()
结果
编辑对steabert提案的更正
subroutine polyval(p, x, pval, nx)
implicit none
real*8, dimension(nx), intent(in) :: p
real*8, intent(in) :: x
real*8, intent(out) :: pval
integer, intent(in) :: nx
integer, parameter :: simd = 8
real*8 :: tmp(simd), xpower(simd), maxpower
integer :: i, j, k
xpower(1) = x
do i = 2, simd
xpower(i) = xpower(i-1)*x
end do
maxpower = xpower(simd)
tmp = 0.0d0
do i = nx+1, simd+2, -simd
do j = 1, simd
tmp(j) = tmp(j)*maxpower + p(i-j)*xpower(simd-j+1)
end do
end do
k = mod(nx-1, simd)
if (k == 0) then
pval = sum(tmp) + p(1)
else
pval = sum(tmp) + p(k+1)
do i = k, 1, -1
pval = pval*x + p(i)
end do
end if
end subroutine polyval
编辑测试代码以验证直接上面的代码对于 x > 1 的结果是否很差
import polynomial as P
import numpy.polynomial.polynomial as PP
import numpy as np
for n in xrange(2,100):
poly1n = np.random.rand(n)
poly1f = np.asfortranarray(poly1n)
x = 2
print np.linalg.norm(P.polyval(poly1f, x) - PP.polyval(x, poly1n)), '\n'